Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: Y.A. Du, T.J. Lenosky, R.G. Hennig, S. Goedecker, and J.W. Wilkins (2011), "Energy landscape of silicon tetra-interstitials using an optimized classical potential", physica status solidi (b), 248(9), 2050-2055. DOI: 10.1002/pssb.201147137.
Abstract: Mobile single interstitials can grow into extended interstitial defect structures during thermal anneals following ion implantation. The silicon tetra‐interstitials present an important intermediate structure that can either provide a chain‐like nucleation site for extended structures or form a highly stable compact interstitial cluster preventing further growth. In this paper, dimer searches using the tight‐binding (TB) model by Lenosky et al. and density functional calculations show that the compact ground‐state Ia4 and the I4‐chain are surrounded by high‐lying neighboring local minima.\nTo furthermore explore the phase space of tetra‐interstitial structures an empirical potential is optimized to a database of silicon defect structures. The minima hopping method combined with this potential extensively searches the energy landscape of tetra‐interstitials and discovers several new low‐energy I4 structures. The second lowest‐energy I4 structure turns out to be a distorted ground‐state tri‐interstitial bound with a single interstitial, which confirms that the ground‐state tri‐interstitial may serve as a nucleation center for the extended defects in silicon.
See Computed Properties Notes: This file was taken from the August 22, 2018 LAMMPS distribution. It is listed as being contributed by Alexander Stukowski (Technische Universität Darmstadt) File(s):