Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: P.S. Branicio, J.P. Rino, C.K. Gan, and H. Tsuzuki (2009), "Interaction potential for indium phosphide: a molecular dynamics and first-principles study of the elastic constants, generalized stacking fault and surface energies", Journal of Physics: Condensed Matter, 21(9), 095002. DOI: 10.1088/0953-8984/21/9/095002.
Abstract: Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge–charge, charge–dipole and dipole–dipole interactions as well as covalent bond bending and stretching. Predictions are made for the elastic constants as a function of density and temperature, the generalized stacking fault energy and the low-index surface energies.