× Notice! This site is currently being redesigned. Please let us know any feedback on the new design or if you find something incorrect/not working.
× Updated! Computed properties are now sorted by implementation versions.

1999--Liu-X-Y-Liu-C-L-Borucki-L-J--Al-Cu

Citation: X.-Y. Liu, C.-L. Liu, and L.J. Borucki (1999), "A new investigation of copper's role in enhancing Al-Cu interconnect electromigration resistance from an atomistic view", Acta Materialia, 47(11), 3227-3231. DOI: 10.1016/s1359-6454(99)00186-x.
Abstract: An explanation of why Cu prolongs the electromigration lifetime of Al–Cu interconnects in comparison to Al is provided based on atomistic calculations. Copper preferentially segregates to the grain-boundary (GB) interstitial sites. The overall GB diffusivity is reduced with Cu segregation at GB sites. Calculation results predict that in Al(Cu) lines, Cu will diffuse first, with Al diffusion essentially suppressed because of a higher diffusion activation energy. The activation energy for Cu incubation diffusion is calculated to be 0.95 eV. The predictions are in excellent agreement with experiments.

EAM setfl
Notes: al-cu-set.txt was obtained from http://enpub.fulton.asu.edu/cms/potentials/main/main.htm and posted with the permission of J.B. Adams.
File(s):
LAMMPS pair_style eam/alloy (1999--Liu-X-Y--Al-Cu--LAMMPS--ipr1)
See Computed Properties
Notes: To make the al-cu-set.txt file compatible with the eam/alloy style in LAMMPS, replace line 4 with "2 Al Cu" and the "D"s with "E"s in the numbers. This has been done in al-cu-set.eam.alloy.
File(s):
Date Created: October 5, 2010 | Last updated: April 26, 2019