Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: G.J. Ackland, S.J. Wooding, and D.J. Bacon (1995), "Defect, surface and displacement-threshold properties of α-zirconium simulated with a many-body potential", Philosophical Magazine A, 71(3), 553-565. DOI: 10.1080/01418619508244468.
Abstract: A many-body interatomic potential has been developed for the h.c.p. metal α-zirconium using the same methodology as that used by Ackland for α-titanium. The repulsive pair part of the potential has been constructed so that the model can be employed for simulating atomic collisions. The favoured self-interstitial configurations are the 〈1120〉 crowdion and split defects, and they are highly mobile in the basal plane. The energy of surfaces is not strongly dependent on the crystallographic orientation, and the I2 stacking fault on the basal plane is not stable. The displacement threshold energy in a crystal at 0 K exhibits a similar orientation dependence to that computed recently for α-titanium by Bacon et al. and has the same minimum of 27·5 eV along the 〈1120〉 directions, but the mean value of 55 eV averaged over all orientations is higher than that of 30 eV in titanium.
Related Models:
Moldy FS (1995--Ackland-G-J--Zr--MOLDY--ipr1)
Notes: The parameters in zr.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland. From that website: "Note typoes in the journal version of zirconium." File(s):
See Computed Properties Notes: A conversion to LAMMPS from MOLDY was performed by G.J. Ackland and submitted on 10 Oct. 2017. This implementation includes the short-range repulsion for radiation studies. File(s):
See Computed Properties Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1995--Ackland-G-J--Zr--LAMMPS--ipr1. Link(s):