Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: G.J. Ackland, and V. Vitek (1990), "Many-body potentials and atomic-scale relaxations in noble-metal alloys", Physical Review B, 41(15), 10324-10333. DOI: 10.1103/physrevb.41.10324.
Abstract: We derive empirical many-body potentials for noble-metal alloy systems in the framework of the Finnis-Sinclair model [Philos. Mag. A 50, 45 (1984)] which is based on a second-moment approximation to the tight-binding density of states for transition metals [F. Cyrot, J. Phys. Chem. Solids 29, 1235 (1968)]. The most important extension of the model is a simple incorporation of interspecies interactions which involves fitting the alloying energies. The importance of properly accounting for the local atomic relaxations when constructing the potentials is emphasized. The observed principal features of the phase diagrams of the alloys are all well reproduced by this scheme. Furthermore, reasonable concentration dependences of the alloy lattice parameter and elastic constants are obtained. This leads us to suggest that fine details of the electronic structure may be less important in determining atomic structures than are more global parameters such as atomic sizes and binding energies.
See Computed Properties Notes: These files were provided by Jyri Kimari on 8 May 2023. The code_and_tests.zip folder contains the fortran program and input file used to generate the eam.fs file, plots of the potential functions,and plots of the binary alloying energies. For the alloying energies, two sizes were investigated (256 atoms and 32000 atoms) which respectively agree with the local and hydrostatic configurational sampling models (LCSM and HCSM) reported in the paper. File(s):