× Updated! Potentials that share interactions are now listed as related models.


Citation: R. Biswas, and D.R. Hamann (1987), "New classical models for silicon structural energies", Physical Review B, 36(12), 6434-6445. DOI: 10.1103/physrevb.36.6434.
Abstract: A theory of classical two- and three-body interatomic potentials is developed. The ability of the classical potentials to model quantum-mechanical local-density-functional calculations for a wide range of silicon structures is explored. In developing classical models it was found to be necessary to perform new local-density-functional calculations for self-interstitial and layered silicon structures. Two different potentials are derived from fits and tests to energies of bulk, surface, layered, and self-interstitial structures. One potential models bulk energies and high-pressure properties well; the other is more appropriate for properties of the tetrahedral structure. Simulated annealing is used to find low-energy structures for silicon-atom clusters.

Date Created: October 5, 2010 | Last updated: June 09, 2022