× Notice! This site is currently being redesigned. Please let us know any feedback on the new design or if you find something incorrect/not working.
× Updated! Computed properties are now sorted by implementation versions.


Citation: S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.
Abstract: A consistent set of embedding functions and pair interactions for use with the embedded-atom method [M.S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empirically to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals. The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys. The validity of the functions is tested by computing a wide range of properties: the formation volume and migration energy of vacancies, the formation energy, formation volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities to (100) surfaces.

Notes: The cross-elemental interactions use a universal function designed to show trends across the metals and is not fitted for revealing compounds.

See Computed Properties
Notes: These files were taken from the August 22, 2018 LAMMPS distribution.
Date Created: October 5, 2010 | Last updated: April 26, 2019