next up previous contents
Next: Fundamental Solution Up: Theory Previous: Theory

Basics

Okay, say we have a volume $\Omega$ with boundary $\partial\Omega$, on which we are solving $\nabla^2u=0$, with $u=\bar{u}$ on $\partial\Omega_1$ and $\nabla
u\cdot\hat{n}=\bar{q}$ on $\partial\Omega_2$ ($\hat{n}$ is the outward-pointing unit normal vector). We can approximately solve it using the following weighted residual equation in the Galerkin Finite Element formulation:

\begin{displaymath}\int_\Omega\phi\nabla^2udV =
\int_{\partial\Omega_2}\phi(\nab...
...A}
-\int_{\partial\Omega_1}(u-\bar{u})\nabla\phi\cdot\vec{dA}.
\end{displaymath} (6.1)

Integrating the left side by parts and subtracting $\int_{\partial\Omega}\phi
\nabla u\cdot\vec{dA}$ gives

\begin{displaymath}-\int_\Omega\nabla\phi\cdot\nabla udV =
-\int_{\partial\Omega...
...ec{dA}
+\int_{\partial\Omega_1}\bar{u}\nabla\phi\cdot\vec{dA},
\end{displaymath} (6.2)

and another integration plus $\int_{\partial\Omega}u\nabla\phi\cdot\vec{dA}$gives

 \begin{displaymath}
\int_\Omega u\nabla^2\phi dV =
-\int_{\partial\Omega_2}\phi\...
...ec{dA}
+\int_{\partial\Omega_1}\bar{u}\nabla\phi\cdot\vec{dA},
\end{displaymath} (6.3)

which this book calls the ``starting point for the boundary element method''.



Adam Clayton Powell IV
1999-07-23