JVASP-30620_Ti3AlSe2ClO8
JARVIS-ID:JVASP-30620 Functional:optB88-vdW Primitive cell Primitive cell Conventional cell Conventional cell
Chemical formula:Ti3AlSe2ClO8 Formation energy/atom (eV):-2.329 a 7.636 Å α:112.303 ° a 7.636 Å α:67.697 °
Space-group :P1, 1 Relaxed energy/atom (eV):-5.4645 b 9.017 Å β:67.58 ° b 8.409 Å β:71.413 °
Calculation type:Bulk SCF bandgap (eV):0.747 c 8.409 Å γ:108.587 ° c 9.017 Å γ:67.58 °
Crystal system:triclinic Point group:1 Density (gcm-3):3.37 Volume (3):484.82 nAtoms_prim:30 nAtoms_conv:30
Download input files

Structural analysis [Reference]

The following shows the X-ray diffraction (XRD)[Source-code] pattern and the Radial distribution function (RDF) plots [Source-code]. XRD peaks should be comparable to experiments for bulk structures. Relative intensities may differ. For mono- and multi-layer structures , we take the z-dimension during DFT calculation for XRD calculations, which may differ from the experimental set-up.


Thermoelectric properties [Reference]

Thermoelectric properties are calculated using BoltzTrap code [Source-code]. Electron and hole mass tensors (useful for semiconductors and insulators mainly)are given at 300 K [Source-code]. Following plots show the Seebeck coefficient and ZT factor (eigenvalues of the tensor shown) at 300 K along three different crystallographic directions. Seebeck coefficient and ZT plots can be compared for three different temperatures available through the buttons given below. Generally very high Kpoints are needed for obtaining thermoelectric properties. We assume the Kpoints obtained from above convergence were sufficient [Source-code].

WARNING: Constant relaxation time approximation (10-14 s) and only electronic contribution to thermal conductivity were utilized for calculating ZT.

Electron mass tensor (me unit)

15.58 8.55 -1.18
8.55 43.79 7.2
-1.18 7.2 3.02

Hole mass tensor (me unit)

27.91 0.99 -3.87
0.99 13.01 -5.3
-3.87 -5.3 15.92

n-& p-type Seebeck coeff. (µV/K), power-factor (µW/(mK2)), conductivity (1/(*m)), zT (assuming lattice part of thermal conductivity as 1 W/(mK)) at 600K and 1020 cm-3 doping. For mono/multi-layer materials consider Seebeck-coeff only.)

Property xx yy zz
n-Seebeck -323.81 -255.93 -235.62
n-PowerFactor -72.02 63.39 1793.34
n-Conductivity 240.52 904.41 17658.69
n-ZT -0.12 0.05 1.09
p-Seebeck 290.78 305.34 309.1
p-PowerFactor 35.56 59.21 142.54
p-Conductivity 411.77 647.95 1508.83
p-ZT 0.02 0.04 0.09

Magnetic moment [Reference]

The orbital magnetic moment was obtained after SCF run. This is not a DFT+U calculation, hence the data could be used to predict zero or non-zero magnetic moment nature of the material only.

Total magnetic moment: 0.0 μB

Magnetic moment per atom: 0.0 μB

Magnetization
Elementsspdtot
Ti0.00.00.00.0
Ti0.00.00.00.0
Ti-0.0-0.0-0.0-0.0
Ti0.00.00.00.0
Ti0.00.00.00.0
Ti0.00.00.00.0
Al0.00.00.00.0
Al-0.00.00.00.0
Se0.0-0.00.0-0.0
Se0.00.0-0.00.0
Se0.00.00.00.0
Se0.00.00.00.0
Cl-0.0-0.00.0-0.0
Cl-0.0-0.00.0-0.0
O-0.0-0.00.0-0.0
O-0.0-0.00.0-0.0
O-0.0-0.00.0-0.0
O-0.0-0.00.0-0.0
O-0.0-0.00.0-0.0
O-0.0-0.00.0-0.0
O-0.0-0.00.0-0.0
O0.00.00.00.0
O-0.0-0.00.0-0.0
O0.00.00.00.0
O-0.0-0.00.0-0.0
O-0.0-0.00.0-0.0
O0.0-0.00.0-0.0
O-0.0-0.00.0-0.0
O-0.0-0.00.0-0.0
O-0.0-0.00.0-0.0

See also

Links to other databases or papers are provided below

mvc-1472

NIST Disclaimer