- HOME
- JARVIF-FF
- JARVIS-DFT
- JARVIS-ML
- MDCS
- Github
- Publications
- News
- Workshops
- Documentation
- Other links
- Contact

JARVIS (Joint Automated Repository for Various Integrated Simulations) is a repository designed to automate materials discovery using classical force-field, density functional theory, machine learning calculations and experiments.

The Force-field section of JARVIS (JARVIS-FF) consists of thousands of automated LAMMPS based force-field calculations on DFT geometries. Some of the properties included in JARVIS-FF are energetics, elastic constants, surface energies, defect formations energies and phonon frequencies of materials.

The Density functional theory section of JARVIS (JARVIS-DFT) consists of thousands of VASP based calculations for 3D-bulk, single layer (2D), nanowire (1D) and molecular (0D) systems. Most of the calculations are carried out with optB88vDW functional. JARVIS-DFT includes materials data such as: energetics, diffraction pattern, radial distribution function, band-structure, density of states, carrier effective mass, temperature and carrier concentration dependent thermoelectric properties, elastic constants and gamma-point phonons.

The Machine-learning section of JARVIS (JARVIS-ML) consists of machine learning prediction tools, trained on JARVIS-DFT data. Some of the ML-predictions focus on energetics, heat of formation, GGA/METAGGA bandgaps, bulk and shear modulus. The ML webpage is visible to NIST employees only right now, but will be available publicly soon.

** Presentation slides for brief overview.**

More details coming soon !

NIST Disclaimer