JARVIS-DFT NIST Disclaimer

Structural formula: Mo2 S4

Functional: PBEBO

Space group : P6_3/mmc

Calculation type: 2L

JARVIS ID: JVASP-10424

a 3.192 Å , b 3.192 Å , c 12.474 Å

α 90.0 ° , β 90.0 ° , γ 120.0 °

Download input files

Convergence

Calculations are done using VASP software. Convergence on KPOINTS and ENCUT is done with respect to total energy of the system within 0.001 eV tolerance. Please note convergence on KPOINTS and ENCUT is generally done for target properties, but here we assume energy-convergence with 0.001 eV should be sufficient for other properties also. The points on the curves are obtained with single-point calculation (nuber of ionic steps,NSW=1). However, for very accurate calculations, NSW>1 might be needed.

Structural analysis

The following shows the X-ray diffraction (XRD) pattern and the Radial distribution function (RDF) plots.

Electronic structure

The following shows the electronic density of states and bandstructure. DFT is generally predicted to underestimate bandgap of materials. Accurate band-gaps are obtained with higher level methods (with high computational requirement) such as HSE, GW, which are under progress. Total DOS, Orbital DOS and Element dos buttons are provided for density of states options. Energy is rescaled to make Fermi-energy zero. In the bandstructure plot, spin up is is shown with blue lines while spin down are shown with red lines. Non-degenerate spin-up and spin-down states (if applicable) would imply a net orbital magnetic moment in the system.

Bandgap (eV): 0.917 I

Electrostatic potential

The following plot shows the plane averaged electrostatic potential (ionic+Hartree) along z direction. The red line shows the Fermi-energy while the green line shows the maximum value of the electrostatic potential. For slab structures (with vacuum along z-direction), the difference in these two values can be used to calculate work-function of the material.

Optical properties

Incident photon energy dependence of optical is shown below. Only interband optical transitions are taken into account.Please note the underestimatation of band-gap problem with DFT will reflect in the spectra as well. For very accurate optical properties GW/BSE calculation would be needed, which is yet to be done because of their very high computational cost. Optical properties for layered materials needs to be rescaled with the actual thickness to simulation z-box ratio. Absorption coeffiecient is in cm-1 unit.

Elastic tensor and derived phonon properties

Elastic tensor calculated for the conventional cell of the system with finite-difference method. For layered materials, the elastic constants are rescaled with respect to vacuum padding (see the input files) and the units for elastic coefficients are in N/m. Phonons obtained from this calcuation are also shown.

WARNING: Please note this may not be the exact phonon modes of the system as we did not test the cell-size dependence of phonons yet. At least 1.2 nm x1.2 nm x1.2 nm or more is needed for obtaining reliable phonon spectrum. For systems having primitive-cell phonon representation tables, I denotes infrared activity and R denotes Raman active modes (where applicabale).

Elastic Tensor Cij GPa

214.9 57.3 11.2 -0.0 0.0 -0.0
57.3 214.9 11.2 0.0 0.0 0.0
11.2 11.2 49.4 -0.0 0.0 -0.0
-0.0 0.0 -0.0 78.8 -0.0 -0.0
-0.0 0.0 0.0 -0.0 13.5 -0.0
-0.0 0.0 -0.0 -0.0 -0.0 13.5
Phonon mode (cm-1)
-0.0324254633
0.049650533
0.0566075075
28.785963239
28.7859760676
54.2894676636
273.487044503
273.487089249
275.581033681
275.581078086
368.310425307
368.310479675
368.373816256
368.373870613
393.927762383
400.233894831
451.218628158
455.299385475

Point group

point_group_type: 6/mmm

Visualize Phonons here
Phonon mode (cm-1) Representation
-0.0324254628 A2u I
0.0496505332 None
0.0566075075 None
28.785963239 E2g R
54.2894676636 B2g
273.487044503 E2u
275.581033681 E1g R
368.310425307 E2g R
368.373816256 E1u I
393.927762383 B1u
400.233894831 A1g R
451.218628158 A2u I
455.299385475 B2g

Reference


POSCAR-mp-2815.vasp
MP link