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A mathematical algorithm is presented that locates and
calculates the area beneath peaks from real data using
only reproducible mathematical operations and no user-
selected parameters. It makes no assumptions about peak
shape and requires no smoothing or preprocessing of the
data. In fact, it is shown that for matrix-assisted laser
desorption time-of-flight mass spectra noise exists at all
frequency ranges making the smoothing of data without
distortion of peak areas impossible. The algorithm is
based on a time-series segmentation routine that reduces
the data set to groups of three strategic points where
each group defines the beginning, center, and ending of
each peak located. The peak areas are found from the
strategic points using a commonplace polygonal area
calculation routine. Peaks with statistically insignificant
height or area are then discarded. The performance of the
algorithm is demonstrated on a polystyrene mass spec-
trum with varying degrees of noise added either math-
ematically or experimentally. An on-line implementation
of the method, termed MassSpectator, for public use can
be found at www.nist.gov/maldi.

The new generation of mass spectrometers produces an
astounding amount of high-quality data very rapidly.1 Robots for
sample preparation combined with instrumentation having auto-
mated data collection routines are becoming common features in
many analytical laboratories. Such high-throughput experimenta-
tion leads to inevitable data analysis bottlenecks. Algorithms that
do not require human intervention are needed for rapid and
repeatable quantitative processing of spectra that often contain
hundreds of discrete peaks. New algorithms that work without
user input will not only save operator time but also have the
potential to eliminate operator bias.

This second criterion is crucial for NIST’s goal of creating a
synthetic polymer absolute molecular mass distribution Standard
Reference Material by mass spectrometry. One of the key
elements in creating such a standard is finding a robust, stable,
and reproducible data analysis procedure that does not introduce
operator bias. In previous work,2 NIST conducted a matrix-assisted

laser desorption/ionization time-of-flight mass spectrometry (MAL-
DI-TOF MS) interlaboratory comparison on a low-mass, narrow-
dispersity polystyrene homopolymer. Working from the raw data
files provided by some of the participants, we compared our
reduced values for number-average and mass-average molecular
mass with those of the participants and found considerable
disagreement in some cases. These disagreements were traced
to decisions made by the investigator on the details of how to re-
duce the data. Surprisingly there was more concurrence in the
raw data than in the reduced results. From this it was concluded,
“A uniform method of polymer molecular mass distribution inte-
gration is needed to eliminate these problems”2 and later reaf-
firmed at an industry-government workshop entitled Quantitative
Synthetic Polymer Mass Spectrometry held at NIST in November
2002.3 The work presented here is an attempt to provide such a
uniform method. It follows our work on autocorrelation methods
for systematic peak identification in complex mass spectra
containing hundreds of peaks.4 Autocorrelation methods allow for
peak identification in noisy spectra without operator bias. In this
work, we take a different approach not only to identify peaks in
real data but to provide their relative areas as well.

Toward this end, a unified collection of algorithms is presented
that locates peaks and calculates their associated areas using only
reproducible mathematical operations and no user-selected pa-
rameters. As shown in Figure 1, the method consists of three
steps: (1) statistical characterization of the data set and a
corresponding analyte-free data set; (2) data set segmentation to
determine the strategic points; and (3) deflation of the number
of strategic points guided by the statistical properties of the
original spectrum and its congruent analyte-free spectrum. The
analyte-free spectrum (sometimes termed a “blank”) is a spectrum
taken under the same instrument conditions as the spectrum of
interest. We refer to this case as being “congruent”. The aim of
this spectrum is to isolate only the noise without the signal of
interest. It is desirable that the noise be of exactly the same
character in the spectrum of interest and in its congruent analyte-
free spectrum. We have found that this is not always the case for
MALDI-TOF MS of synthetic polymers but is often close enough
as to have no consequence for the method outlined here. The
strategic points are deflated using the characteristics of both the
original and the analyte-free spectra. The final deflated set of
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strategic points consists of groups of three points that define the
beginning, center, and end of each peak in the data. Finally, an
elementary polygonal fitting routine is used to calculate relative
peak area.

After a brief description of the algorithm, examples will be
shown using MALDT-TOF mass spectra of the standard polysty-
rene sample used in our previous interlaboratory comparison.2 It
should be noted that a mathematical description of our segmenta-
tion algorithm has been published previously.5 An on-line imple-
mentation of the method for public use can be found at www.nist-
.gov/maldi and has been given the name MassSpectator for
convenience.

DESCRIPTION OF METHOD
Spectrum Segmentation. A nonlinear programming algo-

rithm using an L2 (least squares) approximation to an L1 (least
absolute value) fit was employed.5-8 L1 fits are superior to L2 fits
due to their increased tolerance for outliers; that is, outlying points
do not exert as much control over the final fit. Given a data set of
N points, we find a collection of strategic points and find the
unique optimal piecewise linear function passing through the x
coordinate of each strategic point. This defines a set of function
maximums and minimums corresponding to the peak maximums
and the peak limits. The peaks’ original data are then integrated
by finding the area of the polygon determined by the strategic
points.

Our segmentation method is a two-step algorithm. The first
portion requires the selection of strategic points and is the same
as the earlier work of Douglas and Peucker.9 These points are
selected based on an iterative procedure that identifies points
whose orthogonal distance from the end-point connecting line
segment is greatest. Once a point with greatest orthogonal

distance from the mean has been identified, it joins the collection
of strategic points and, in turn, becomes an end point for two new
line segments from a point with greatest orthogonal distance. This
numerical scheme is performed until the greatest orthogonal
distance to any end-point connecting line segment drops beneath
a prescribed threshold value. This threshold value is the only
algorithmic parameter and is based on a statistical analysis of the
data and its congruent analyte-free spectrum. Clearly the selection
of these points does not require equally spaced data; therefore,
the method is equally well suited for TOF data expressed in either
time or mass space. Here we chose to work in time space with
the data in its most basic state and to eliminate the need to do a
point-by-point correction of intensity using partial integrals.4,10 The
second phase of the algorithm, developed specifically for this work,
requires the solution of an optimization problem, specifically,
locating strategic point heights (that is adjusting strategic point
y-axis values at their associated strategic x-axis value) that
minimize the sum of orthogonal distance from raw data. This
problem is a nonlinear (and nonquadratic) optimization problem
that can be accomplished quickly using a recently developed
nonlinear programming algorithm.11

Figure 2 gives a graphical representation of the segmentation
step of the method using a simple three-peak model with added
high-frequency white (that is, uncorrelated random) noise. The
first two strategic points chosen are always the first and last points
of the data set. A line is drawn connecting these two points, and
the data point the greatest orthogonal distance from this line is
selected as a new strategic point. This process is iterated over all
line segments until the orthogonal distance falls below a threshold
parameter calculated from the statistical analysis of the data set
and its congruent analyte-free data set as described in the next
section. Finally, the strategic point heights are adjusted to
minimize the distance from the original (full) data set. Clearly
this method requires no knowledge of peak shape and no
preprocessing of the data (e.g., smoothing) nor does it require
equal spacing of data points.

Strategic Point Deflation. Once the data set is fully seg-
mented, strategic points are discarded in accordance with the
statistical analysis of the original data set and its congruent analyte-
free data set. This “deflation” of strategic points using statistically
derived thresholds is performed by first analyzing the analyte-
free spectrum for peaks and peak areas. Once a collection of peaks
and peak areas has been accumulated, the spectrum with sample
is then analyzed. Each peak identified from the spectrum with
analyte is compared to peaks found in relative proximity from the
analyte-free spectrum algorithm output (i.e., peaks that appear
with similar time or mass coordinates). If any peak in the spectrum
with analyte has a smaller peak height or smaller peak area than
most (∼95%) of the background-spectrum peaks in proximity, then
that peak is ignored. Thus, no peak is identified from the sample
spectrum that could have been identified by height or area from
the background spectrum. This discarding of strategic points also
serves to prevent the inadvertent subdivision of larger peaks into
a set of smaller peaks. This can sometimes occur if the noise in
the analyte spectrum is much greater than the noise in the
congruent background spectrum.
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Figure 1. Flow diagram for the suite of algorithms defining the
MassSpectator data analysis method.
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Polygonal Area Calculation. Once the final set of strategic
points has been found, the area of the polygon defined by these
points is calculated. (The polygon is often, but not always, a
triangle. The algorithm will work on polygons of any number of
vertexes connected by line segments.) The line connecting the
first and last strategic points for a given peak determines a “local
baseline”. The mathematical basis for the polygonal area calcula-
tion algorithm is Green’s theorem in the plane and can be
interpreted as repeated application of the trapezoidal rule for
integration.12 The method returns the exact area of the polygon.

EXPERIMENTAL SECTION
Figure 3 shows a MALDI-TOF mass spectrum measured using

a Bruker Reflex II13 of a 7190 u mass-average molecular mass
polystyrene (available from NIST as Standard Reference Material
288814) obtained using protocol 1 as defined in our previous
interlaboratory comparison on this material.2 Protocol 1 calls for

the all-trans-retinoic acid MALDI matrix, the polystyrene analyte,
and the silver trifluoroacetate salt to be dissolved in tetrahydro-
furan in a ratio of 15:1:1 by mass. For the data shown here, this
mixture was electrosprayed in ambient at an applied capillary
voltage of 5 kV onto the stainless steel target of the MALDI mass
spectrometer. This sample preparation was used to ensure sample
homogeneity and reproducibility.15 In particular, Figure 3 shows
an optimal spectrum (and its congruent background spectrum)
for our instrument in terms of signal-to-noise ratio. Optimization
was performed by systematically varying the voltages on the ion
optics, the detector voltage, and the nitrogen laser intensity until
the best signal-to-noise ratio was achieved. Estimated standard
uncertainty (type A) of the peak position from calibration and
repeatability studies is 0.2 u, and the estimated standard uncer-
tainty in overall signal intensity from repeatability studies is 15%.
STATISTICAL OVERVIEW OF THE DATA

The normal probability plot for the synthetic polymer MALDI-
TOF mass spectrum in Figure 3 is shown in Figure 4. If the data
(in this case the relative ion intensities) have a standard normal
(Gaussian) distribution when plotted against their normal score,
the characteristic shape of the plot will be linear.16,17 (For a tutorial
introduction on normal probability plots see section 1.3.3.21 of
the NIST/SEMATECH e-Handbook of Statistical Methods.18) It is
observed from Figure 4 that the normal probability plot is far from
linear and, in fact, has several obvious sharp changes in slope
separating quasi-linear regions indicated by Roman numerals I,
II, and III. This signifies that noise is present at a number of widely
different frequency ranges. Stated another way, the noise is not
purely random (or “white”). In particular, the noise spans the high-
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Figure 2. Graphical representation of time series segmentation
algorithm used in step 2 of the method. The top left panel shows the
ideal measurement response, and the top right panel shows the ideal
measurement adulterated with added random noise. The left middle
panel shows the first step of the algorithm: the simple selection of
the first and last points in the data set, which are always defined as
strategic points. The right middle panel shows the location of the point
the greatest distance from the line segment connection of the first
two strategic points. The lower left panel shows the second iteration
where the two line segments found in the previous step are further
segmented. The lower right panel shows the final result superimposed
on the ideal measurement response. Recall that the y-axis values of
the strategic points are adjusted to best fit the data points between
them. In this simplified model, the threshold for segmentation was
chosen as twice the height of the noise added to the ideal measure-
ment spectrum.

Figure 3. MALDI-TOF mass spectrum of the low-mass, narrow-
polydispersity polystyrene (SRM 2888) and its congruent analyte-
free spectrum used to demonstrate the method’s capabilities. Spectra
are offset for clarity. Expanded views of the analyte spectrum are
shown in Figures 8 and 9.
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frequency range that defines the peak shape for each oligomer
as well as the lower frequency range dictated by the time spacing
between oligomer peaks. The characteristic shape of the normal
probability plot suggests that the noise appears to arise from
multiple sources and that different sources of noise appear to
interfere with each other. Furthermore, our experience shows that
the normal probability plots have subtle variations in shape as
changes to instrument parameters, matrixes, and analytes are
made. Last, the normal probability plot of the background
spectrum has a quite different shape from the normal probability
plot of the analyte spectrum. This makes the a priori prediction
of the noise spectrum from instrumental parameters, or from a
background spectrum, very difficult.

Without adequate models of the sources of noise, smoothing
of raw data by any algorithm could alter peak structure. Thus,
smoothing could remove peaks that are present or create spurious
peaks from noise. Most importantly for quantitation, smoothing
will change relative peak area. All of these limit the accuracy of
any quantitative reduction of the data. Our experience shows that
the power spectrum of the noise cannot be predicted solely from
the experimental conditions; therefore, blind application of smooth-
ing or filtering algorithms may unintentionally remove information
necessary for quantitation of instrument response from the data.
This caution against blind application of smoothing routines has
recently been discussed by Eilers in this journal.19 An innovative
method to identify peaks while avoiding smoothing of the data
has just been published.20 This method entails using local
histograms over variable window widths to isolate regions of the
spectrum that deviate from the baseline.

RESULTS
Noise Added Mathematically. As a first demonstration, let

us return to the example shown in Figure 2. In the upper left panel,

the exact areas of the three peaks are in the ratio 1:1.75:1. The
method finds a ratio of 1.02:1.79:1.03, or stated another way, a
value no more than 3% off the exact value. This example is rather
easy in that the noise is of a much higher frequency than the
signal so separating them by any method would not be too difficult.
More astute models of noise are required for a more challenging
test of the method.

To further test the robustness of the method, we applied the
algorithm to data sets corrupted by several types of simulated
noise (error). The first seeks to simulate errors made in the time
measurement (e.g., digitizer jitter). While it is our opinion that
this error will be small when compared to other instrument errors,
we include it here for completeness. This is well modeled by a
Bernoulli process using a Laplacian noise model probability
density function (PDF) as shown in Figure 5. If ti

r denotes the
ith component of the true time series, then the observed ti

0 can
be modeled as

where ε1 defines the magnitude of the error and σ is a constant
known as the Bernoulli probability parameter.21

Second, we sought to model the combined type A (“random”)
and type B (“systematic”) measurement uncertainties encountered

(19) Eilers, P. H. C. Anal. Chem. 2003, 75, 3299.
(20) Jarman, K. H.; Daly, D. S.; Anderson, K. K.; Wahl, K. L. Chemom. Intell.

Lab. Syst. 2003, 69, 61.

Figure 4. Normal probability plot for the MALDI-TOF mass spectrum
shown in Figure 3 revealing the complex shape indicative of several
sources of noise in the analyte spectrum and in the congruent analyte-
free background spectrum. Roman numerals in the analyte spectrum
refer to three distinct linear regions likely stemming from three sources
of noise.

Figure 5. Graphical representation of the model noise PDF used.
The Laplacian PDF was used to model noise on the time axis, and
the Cauchy and generalized Gaussian PDFs were used to model
noise on the intensity axis.

ti
0 ) ti

r(1 ( ε1
exp(-|t|/(σ/x2))

x2σ ) (1)
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in the intensity coordinate of the data. Type A arises from such
things as poor counting statistics for small peaks while type B
arises from such things as mass-biased ionization probabilities
or mass-biased detector sensitivity. Truncation and round-off
errors introduced by the data system are also included in this
model; however, they are generally not as significant as the other
errors. The errors in the intensity coordinate are expected to play
the major role in the final determination of molecular mass
distribution. To model this more detrimental noise, we added
varying amounts of noise selected from one of the following noise
distributions to the intensity measurement, Ii

r, at randomly
selected points in the spectrum shown in Figure 3 such that the
selected data points suffer some nonzero error. We used two
distributions the Cauchy

where ε2 defines the magnitude of the error and σ is the Cauchy
probability distribution constant, and the (generalized) Gaussian

where ε2 defines the magnitude of the error and Γ and A are the
constants for the generalized Gaussian.21 See Figure 5 for a
graphical representation of the shape of these probability density
functions. Note that the Cauchy PDF has a greater relative width
than the generalized Gaussian. Given these three models of
uncertainty, the robustness of the algorithm can be tested. We
choose only to operate on only some points of the spectrum as a
means to control the level of added mathematical noise; other
means could of course be chosen.

In Tables 1 and 2 we report on the behavior of the algorithm
on data sets with varying degrees of simulated noise corruption
for the Cauchy and the generalized Gaussian PDFs. In the tables,
the parameter p gives the fraction of points in the spectrum
corrupted by noise; that is, p ) 0.01 indicates 1% of the data points
have been effected. Of those points, each is subjected to an error
in t defined by eq 1 and an error in I defined by either the Cauchy
(Table 1) or the generalized Gaussian (Table 2) PDF. The
algorithm performs similarly in the face of large and small amounts
of noise, up to a critical point. As noise was increased, the number
of strategic points identified increased representing the creation

of “false” peaks through the random correlation of noise fluctua-
tions. At the critical point, the signal-to-noise ratio is such that it
is impossible to extract meaningful quantitative measures. At
reasonably small changes to the signal-to-noise ratio, the algorithm
finds only a small change to the moments of the molecular mass
distribution (specifically Mn the number-average molecular mass
and Mw the mass-average molecular mass as defined in eqs 4 and
5).

where Ni is the number of molecules of mass Mi.
Noise Added Experimentally. To degrade the polystyrene

MALDI-TOF mass spectrum signal-to-noise ratio experimentally,
the optimal laser intensity of 0.2 µJ/pulse at the sample was first
decreased to 0.1 µJ/pulse and then increased to 0.33 µJ/pulse
and to 0.5 µJ/pulse. (All values are (0.01 µJ/pulse, which is the
standard deviation of 100 pulses and is taken as an estimate of
the standard uncertainty.) Increasing the laser energy creates
more “chemical” noise in the spectrum. For the 0.33 µJ/pulse
experiment, this noise is concentrated near the main peaks at the
center of the spectrum and is attributed to ions arriving at the
improper time for their corresponding mass. This can result from
excessive initial velocity imparted by the ablation process or from
metastable ion fragmentation in the flight tube or in the ion mirror
of the mass spectrometer. For the 0.5 µJ/pulse experiment, this
“noise” appears at low mass due to silver clusters. Changing the
voltage on the channel plate detector also degraded the spectrum.
The voltage to produce the best signal-to-noise ratio was 1.5 kV.
The voltage was decreased to 1.4 kV, making the detector quiet
but not very sensitive, and increased to 1.6 kV, making a sensitive
but not very quiet detector. (All voltages are (0.01 kV, which is
taken from the instrument’s voltage monitoring hardware.) Raising
the detector voltage produced increased “electronic” noise, that
is, high-frequency noise across the entire spectrum.

Figure 6 shows the original spectrum optimized for signal-to-
noise ratio (from Figure 3) as well as one laser power setting
below and two above the optimum value. The signal-to-noise ratio
has been lowered especially for the small peaks found at the wings
of the molecular mass distribution. In addition, silver cluster peaks
(Agn

+) with the characteristic alternating peak height structure
(21) Hogg, R. V.; Craig, A. T. Introduction to mathematical statistics; MacMillan:

New York, 1978.

Table 1. Performance of the Method with Variable
Amounts of Numerically Simulated Noise Using the
Cauchy Probability Distribution Function (Eq 2) To
Define the Error in Intensity

p ε1 ε2

no. of
peaks

Mn
(µs)

Mw
(µs)

0.01 0.1 0.1 176 99.24 99.69
0.05 0.2 1 180 99.17 99.83
0.1 0.3 10 278 93.08 141.4
0.25 0.5 100 1912 298.6 359.2

Ii
0 ) Ii

r(1 ( ε2
1

πσ(1 + (t/σ)2)) (2)

Ii
0 ) Ii

r(1 ( ε2
1

2Γ(5/4)A
exp(- t4

A4)) (3)

Table 2. Performance of the Method with Variable
Amounts of Numerically Simulated Noise Using the
Generalized Gaussian Probability Distribution Function
(Eq 2) To Define the Error in Intensity

p ε1 ε2

no. of
peaks

Mn
(µs)

Mw
(µs)

0.01 0.1 0.1 176 99.24 99.73
0.05 0.2 1 177 99.28 99.77
0.1 0.3 10 225 99.97 103.2
0.25 0.5 100 1078 238.1 245.3

Mn ) ∑ NiMi

∑ Ni

(4)

Mw ) ∑ NiMi
2

∑ NiMi

(5)
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(due to the even-n clusters being more stable than the odd-n
clusters) are observed in Figure 6D for the highest laser power.
Last, the baseline is much higher at lower mass in the two spectra
created by the excess laser power. This is due to the abundance
of clusters (matrix, silver, and matrix + silver) and, to a lesser
extent, metastable polystyrene fragments, each of which is
unfocused in time. These effects will alter the measured molecular
mass distribution; however, what we wished to show is that the
method presented here will find the statistically significant peaks
in a variety of situations. Table 3 gives the number of peaks and
the mass distribution moments Mn and Mw for the spectra studied.
Notice that for the highest laser power data the mass distribution
moments are very low due to the inclusion of the silver cluster
peaks in the calculation. At this point, the operator must intervene
to sort out the polymer peaks from the spurious silver cluster
peaks. The number of peaks is also lower at the highest laser
power because the small interstitial peaks between the main series
peaks have been lost in the noise. Nevertheless, the method
performed its function by identifying and calculating the area of

the peaks in the spectrum and returning results that would be
expected from the experimental conditions.

Changing the detector voltage (and thus the detector sensitiv-
ity) played a much smaller role in altering the molecular mass
moments, as seen in Table 3. The number of peaks found drops
in both cases. At the lower voltage, the smaller peaks are not
registered, while at the higher voltage, they may be registered
but are lost in the noise. In either case, the method either fails to
find a peak or deems it to be not statistically significant.

Last, the original data set and its congruent analyte-free
spectrum were smoothed using a 7-point moving average. While
the original spectrum had 175 peaks identified by the algorithm,
the smoothed spectrum has only 160. Thus, 15 peaks were
smoothed to below the statistical lower limit. This was true even
though the background spectrum was smoothed in the same
manner. Shown in Figure 7 are the areas of these two peaks sets
in descending order. Note that the ion intensities are now plotted
on a logarithmic scale. Also shown is the ratio of peak areas
(original spectrum divided by smoothed spectrum) on a peak-by-
peak basis across both sets. While the area of the large peaks
was unaffected by the smoothing, the smaller peaks were
significantly reduced in area, some to only one-third of their
original value. Recognize that while the total integrated counts in
the original spectrum are not changed by the running average
(exclusive of small end-point effects), the total peak area found
by the algorithm decreased by 1.7% due to smoothing both
through the loss of the 15 smallest peaks and decreased peak
area of the smaller peaks. Clearly smoothing can lead to the loss
of information and can pose a significant bar to quantitation when
dealing with oligomers found in small quantities in the analyte.

Closer observation of the details of the peaks identified in the
two spectra (original and smoothed) is shown in Figures 8 and 9.
Note again that the ion intensities are plotted on a logarithmic

Figure 6. MALDI-TOF mass spectrum of the low-mass, narrow-polydispersity polystyrene taken at laser powers for (A) optimal signal-to-
noise ratio (same data as in Figure 3), as well as (B) one laser power setting below and (C, D) two above the optimum value. (All figures are
plotted on the same scale; tick labels carry over to unlabeled tick marks in adjacent plots.)

Table 3. Performance of the Method with Variable
Amounts of Experimentally Added Noise

noise source
no. of
peaks

Mn
(µs)

Mw
(µs)

optimal settings
(0.2 µJ/pulse)
(1.5 kV detector voltage)

176 99.2547 99.7114

low laser power
(0.1 µJ/pulse)

228 98.4099 99.2461

high laser power
(0.33 µJ/pulse)

236 97.2339 98.3408

high laser power
(0.5 µJ/pulse)

94 88.0035 90.9924

low detector voltage
(1.4 kV)

92 99.2170 99.5802

high detector voltage
(1.6 kV)

128 99.1670 99.7521
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scale in order to observe the smallest peaks. Peak areas are clearly
changed by smoothing. For example, in Figure 8, the small peaks
in the smoothed spectrum have consistently less area (given by
the magnitude of the vertical lines) than in the raw spectrum.
Furthermore, notice that smoothing can lose peaks, for example,
the peak at 90 µs. In Figure 9, which displays a low signal intensity
region at the beginning of the spectrum, it can be observed that
smoothing, specifically at 81.7 µs and at 83.8 µs, creates peaks.
An analyst might say that those peaks were there all along and
that the 7-point average only brought them out. This notion can
be supported by the periodicity of the data, that is, in parts of the
spectrum where the signal-to-noise ratio is better, peaks are found
at these positions relative to the main series.4 However, from a
purely statistical point of view, these peaks did not have enough
local convexity or area in the raw spectrum to be selected by the
method. Lack of local convexity (“peakiness”) would prevent the
method from finding any strategic points in the segmentation
algorithm. A small relative peak area would cause them to be
discarded in the deflation algorithm of the method.

Last, peak positions are slightly modified by smoothing;
however, the magnitude of this change is far less significant than
the ion intensity axis distortion. In general, the main series peaks
were shifted to longer flight times and the smaller intermediate
peaks were shifted to shorter flight times. However, the time shifts
were only on the order of nanoseconds, which will not affect the
determination of molecular mass distribution, but will greatly affect
instrument calibration if a smoothed spectrum is used as a
calibration reference.

CONCLUSION
A unified collection of algorithms was presented that accurately

locates peaks and calculates their area using only reproducible
mathematical operations and no user-selected parameters. The
method works best with an analyte spectrum and its congruent
analyte-free spectrum to build a model of the measurement noise.
Examples were given of mass spectra corrupted by purely
mathematical means and by instrumental means. The addition of
mathematically derived noise demonstrated the stability of the
algorithm in that even with the addition of large amounts of noise
on either the time or the ion intensity axis did not prevent the
method from finding a reasonable selection of peaks. The addition
of experimentally derived noise demonstrated the marginal nature
of small peaks that can easily be lost. It also showed how
unintended peaks, in this case of silver clusters, can have a
profound effect of molecular mass moments when unbiased
analytical methods are used. Last, smoothing by a 7-point moving
average was shown to change peak area as well as remove and
create peaks in an unpredictable manner.
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Figure 7. Relative peak areas sorted by size for the data of Figure
3 before (solid circles) and after (open squares) application of a 7-point
moving average. Solid line is the ratio of relative peak areas before
and after smoothing showing how ion intensity has been effectively
smoothed away.

Figure 8. Direct comparison of the data of Figure 3 with the 7-point
moving averaged data showing the peak positions and relative peak
areas given by the vertical impulses originating on the time axis. In
this part of the spectrum, peaks are lost from smoothing.

Figure 9. Direct comparison of the data of Figure 3 with the 7-point
moving averaged data showing the peak positions and relative peak
areas given by the vertical impulses originating on the time axis. In
this part of the spectrum, peaks are gained from smoothing.
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