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Technical Issues for TBC’s
• Correlate properties with microstructure

� to shorten materials development cycle
� to improve materials & processing
� to enable more reliable design

• Increase thermal protection
• Increase life
• Increase reliability, 

i.e., predict life, or coating spallation

APPROACH: Develop computational tools for elucidat-
ing influences of stochastic microstructural features 
(e.g., porosity) on physical properties; and provide 
insights into mechanisms that lead to TBC spallation 
via predictive micro-mechanical models of reliability.



PPM2OOF Tool

Mesh Binary Image 

Micrograph

� Convert micrograph to “.ppm” (portable pixel map) file
� Select & identify phases to create binary image
� Assign constitutive physical properties to each phase
� Mesh in PPM2OOF via “Simple Mesh” or “Adaptive 

Mesh” – multiple algorithms that allow elements to 
adapt to the microstructure



OOF Tool
Visualize & Quantify:

normal residual stresses
Virtual Experiments:

constrained cooling

�T

Perform virtual experiments on finite-element mesh:
� To determine effective macroscopic properties
� To elucidate parametric influences
� To visualize microstructural physics
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Young’s Modulus of
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EB-PVD TBC Cross Sections:
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Porosity: key to 
TBC Performance
Porosity: key to 

TBC Performance
Intercolumnar
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Intracolumnar
� Insulation

Different
scales of
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Young’s Modulus of EB-PVD TBC’s
Modulus is anisotropic and position dependent
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Ts = 1100 °C

<60% modulus reduction due to intracolumnar porosity>



Effect of Temperature on Surface
Morphology and Texture

Effect of Temperature on Surface
Morphology and Texture

Ts = 900 °C
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10 µm

Ts = 1100 °C

Rotating Substrates

8 RPM, ~0.9 µm/min
(Flux ~ 3.2 µm/min)

Courtesy of Scott Terry & Carlos Levi, University of California, Santa Barbara



Modulus is anisotropic and position dependent
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Young’s Modulus of EB-PVD TBC’s

<60% modulus reduction due to intracolumnar porosity>



Section View of  a ZrO2 – 8 wt% Y2O3
Plasma Sprayed Thermal Barrier Coating

50 �m AM100

ZrO2 – MgO

Free Standing 
Monolith

more than 50 
plasma spray 
parameters!

Fabricated at Thermal 
Spray Laboratory, 

SUNY, Stony Brook
(Jan Ilavsky)



Young’s Modulus versus Porosity

annealed, 1 h

Amdry 142:
115 mm 
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cross section
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Calculating Average Elastic Properties
of a Representative Region

85 �m



Effective Elastic Young’s Modulus Calculated
From Microstructural Finite Elements
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How to Generate Effective Meshes?

Original Image
Low Res. Mesh
Ex = 136 GPa
Ey = 100 GPa
Nodes = 10,894

High Res. Mesh
Ex = 83 GPa
Ey = 40 GPa
Nodes = 43,887



Modulus versus Mesh Resolution
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Modulus versus Mesh Resolution

How accurate should mesh be?

If the structure is truly 
random, then errors in 
simulation might vary with
the spacing between nodes:
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Critical Issues

� Does the mesh resolution capture the 
essential features that affect behavior?

E.g., Does the mesh capture the essence 
of the fine cracks?

� If the mesh resolution is changed, does 
the simulated behavior also change?

� This there asymptotic behavior?
� Can these techniques be validated in a 

general manner?



Modeling Mechanical Behavior of TBC’s

SUMMARY:
� Microstructure-based, finite-element simulations 

provide a new paradigm for property measure-
ments of complex materials, such as, TBC’s.

� Sample preparation & image analysis are critical 
for obtaining accurate, quantitative measures of 
behavior.

� Mesh resolution can have significant influences 
on determined properties.

� Finite-element simulations help to elucidate the 
influences of stochastic microstructural features 
(e.g., porosity) on the elastic behavior of complex 
TBC microstructures.
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