Diffusion in Cu(In,Ga)Se$_2$
Photovoltaic Absorber Formation

Woo Kyoung Kim1,3, J. Y. Shen2, and T.J. Anderson3

1 Institute of Energy Conversion, University of Delaware, USA
2 General Research Institute for Non-ferrous Metals of Beijing, China
3 Department of Chemical Engineering, University of Florida, USA
Outline

■ Cu(In,Ga)Se₂ photovoltaics overview
■ Diffusion reaction study using in-situ HT-XRD
 → CuSe/GaSe → CuGaSe₂
 → Cu-In + Se → CuInSe₂
■ Preliminary study of DICTRA diffusion modeling
 → Cu-In + Se → CuInSe₂
■ Summary
Thin Film CIGS Solar Cells

Building-integrated CIGS, 85kW Shell Solar

Flexible, lightweight Cu(InGa)Se₂ - Global Solar
Best Efficiency of Thin Film Cells

- Cu(In,Ga)Se₂
- CdTe
- a-Si

- Boeing
- AMETEK
- Photon Energy
- Univ. of So. FL
- Kodak
- Monosolar
- Matsushita
- BP Solar
- EuroCIS
- NREL
- Univ. of Maine
- Boeing
- ARCO
- AMETEK
- United Solar
- ECD
- RCA
- Univ. of So. FL
Cu(In,Ga)Se₂ Solar Cells

- Most promising thin film photovoltaic material

 - $\eta = 19.9\%$, NREL (2008)
 - Direct band gap
 - band gap engineering ($E_g \sim 1.2$ eV at $x(Ga)=0.3$)
 - High optical absorption coefficient
 - thin film $\sim 2\ \mu m$
 - High radiation resistance
 - High reliability

Cu(In,Ga)Se₂ Solar Cells

- **Chalcopyrite CIGS structure**
 - Substrate (Soda lime glass)
 - TCO (200~500 nm)
 - n-CdS (50 nm)
 - p-CIGS absorber (2 μm)
 - Mo (~0.5 μm)
 - AR coating
 - Ni/Al grid

Typical device structure
Cu-In-Se Phase Equilibrium

Wide composition tolerance of chalcopyrite α-CuInSe$_2$

x(Cu) = 21~25 at.%

δ: CuInSe$_2$ – sphalerite

β: CuIn$_3$Se$_5$ – ODC

γ: CuIn$_5$Se$_8$ – ODC

T. Gödecke et al., Z. Metallkd (2000)
Common Deposition Techniques

- Co-evaporation of elements (PVD, MBE etc.)
 : Cu, In, Ga, Se
 → *Highest efficiency!!*

- Rapid thermal process (RTP) of stacked or elemental precursors

- Selenization of metallic precursors: *"Shell Solar" 2 step method*

[Diagram of deposition processes and materials]
Diffusion Issues

- Selenization of metallic precursors: "Shell Solar" 2 step method

Ga accumulation at back!

Decrease device performance!
Diffusion Issues

\[\text{Cu-Ga-In/Mo} \xrightarrow{\text{H}_2\text{Se} / \text{H}_2\text{S}} \text{Cu(In,Ga)(Se,S)}_2/\text{Mo} \]

Complete \(\text{H}_2\text{Se} \) reaction prior to \(\text{H}_2\text{S} \)
- Ga segregated to back

Partial \(\text{H}_2\text{Se} \) reaction prior to \(\text{H}_2\text{S} \)
- Ga distributed through film

G. Hanket, W. Shafarman, R. Birkmire. , Proc. 4th World Conf. on PVEC (2006).
Reaction pathways and kinetics using *in-situ* HT-XRD
Precursor Diffusion Couples

- **Cu+Se**
 - Glass
 - $x_{Se} \approx 0.71$

- **In+Se**
 - Glass
 - $x_{Se} \approx 0.80$

- **Ga+Se**
 - Glass
 - $x_{Se} \approx 0.86$

- **Se**
 - **Cu**
 - Glass
 - $x_{Se} \approx 0.67$

- **Se**
 - **In**
 - Glass
 - $x_{Se} \approx 0.81$

- **Se**
 - **Ga**
 - Glass
 - $x_{Se} \approx 0.80$
Precursor Diffusion Couples

- \(\text{CuSe} \) on \(\text{In}_2\text{Se}_3 \) in Glass
- \(\text{CuSe} \) on \(\text{InSe} \) in Glass
- \(\text{Cu+Se} \) on \(\text{InSe} \) in Glass

- \(\text{Cu+In+Se} \) in Glass

- \(\text{Cu+In} \) in Glass

- \(\text{Cu+Ga+Se} \) in Glass

- \(\text{Cu+Ga} \) in Glass

- \(\text{CuSe} \) on \(\text{GaSe} \) in Glass
CuGaSe$_2$ formation from a bilayer GaSe/CuSe diffusion couple
Precursor Preparation by MEE System

- Ultra high vacuum system
- Operating pressure: ~ 10^{-8} Torr

- Rotating platen with 9 substrates:
 - $2'' \times 2''$ square, $2''$ circular
- Sequential deposition:
 - Heating \rightarrow Cu \rightarrow In \rightarrow Ga \rightarrow (Na) \rightarrow Se
HT-XRD System

A: Spot-welded thermocouple
B: Heater strip (Pt20%Rh)
C: Sample

High Temperature Materials Laboratory of Oak Ridge National Lab.
Precursor Structure

![Graph showing CuSe: JCPDS #34-0171 with peaks at CuSe (006), CuSe (102), CuSe (101), CuSe (110), CuSe (108), CuSe (116), and a TEM image showing layers of CuSe, GaSe, and Glass.](image-url)
Temperature ramp anneal

CuSe + GaSe \rightarrow Cu$_{2-x}$Se + Se + GaSe (or Ga$_2$Se$_3$) \rightarrow CuGaSe$_2$

amorphous
Isothermal annealing

Assumption:

- Maximum peak area = 100 % reaction
- Normalized peak area = fractional reaction
Solid-state Growth Models

• Parabolic growth model

Before reaction

Nucleation at A-B interface

Diffusion thru product & reaction (ex. $D_{BC} > D_{AC}$)

$$\frac{dy}{dt} = \frac{D \cdot k}{y}$$

$y^2 = k_p \cdot t$

• Avrami growth model

Phase A Covered with B

Nucleation

Diffusion & growth

$x = 1 - \exp[-(kt)^n]$

$\ln[-\ln(1-x)] = n \ln t + n \ln k$

$0.5 < n < 1.5$

(1-D diffusion)
Modified Avrami Analysis

\[\alpha = 1 - \exp[-(k(t+t^*))^n] \]
Kinetic Analysis

Parabolic model

Modified Avrami model

\[\alpha^2 \sim k \cdot t\]

\[\ln[-\ln(1-\alpha)] = n \ln(t+t^*) + n \ln k\]

Analysis suggests one-dimensional diffusion controlled reaction
TEM-EDS

Isothermal annealing

- **T = 280 °C**
- **T = 300 °C** *(t~30 min)*
- **T = 340 °C**
- **T = 370 °C**

TEM-EDS
TEM-EDS Analysis

Glass/GaSe/CuSe Precursor

EDS line scan

Pt
CuSe
GaSe
Glass

Se
Cu
Ga

distance (µm)
TEM-EDS Analysis

Glass/GaSe/CGS/CuSe annealed for 30 min, at 300 °C

EDS line scan

Ga gradient !!

Ga Cu Se

0 0.2 0.4 0.6
distance (μm)

A B
CuInSe$_2$ formation from selenization of Cu-In precursor

Cu-In
Glass

Se vapor

Reactive annealing

CIS
Glass
HT-XRD with Selenization Chamber

Panalytical Philips X’pert system

Sample holder

Selenium powder
Precursor sample
Aluminum foil
Nickel wire

Capton/Be window
Surrounding Heater
Sample holder

X-ray tube
PSD
Chamber

CW in out

In Out (He)

High Temperature Materials Laboratory, ORNL
Selenization Chamber

Aluminum foil

- Selenium powder
- Precursor sample
- Aluminum foil
- Nickel wire

◆ Al foil:
- (1) Loss of X-ray intensity
- (2) Possible reaction with Se above 650°C

◆ Graphite dome:
- (1) Easy to handle
- (2) Extremely X-ray transparent
- (3) High stability
SEM / EPMA

Precursor

- [Cu] / [In] ~ 1.0
 - Cu-In
 - Mo
 - Glass

Selenized CIS

- CuInSe₂
 - MoSe₂
 - Mo
 - Glass

Island (In-rich)

Matrix (Cu₂In + CuIn)

EPMA Results (Va=6 keV)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Island</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu (at.%)</td>
<td>59.4 (±1.2)</td>
<td>36.0 (±1.0)</td>
</tr>
<tr>
<td>In (at.%)</td>
<td>40.6 (±1.2)</td>
<td>64.0 (±1.0)</td>
</tr>
</tbody>
</table>

- Island: In-rich or nearly pure indium phase
XRD & GI-XRD for Precursor

\[\theta - 2\theta \]

\[\omega = 1^\circ \]
\[\omega = 0.5^\circ \]

Cu\textsubscript{2}In (101)
Cu\textsubscript{2}In (102)
Cu\textsubscript{2}In (-134)

Mo (110)

Indium
(Cu+In)/Mo Selenization

CuInSe₂ (112)
MoSe₂ (004),(100)
Mo (110)
CuInSe₂ (312)
MoSe₂ (312)
MoSe₂ (105)
MoSe₂ (110)

CuSe→CuSe₂

500 °C
440 °C
300 °C
230 °C
90 °C
25 °C

[Cu]/[In]~1

Mo → MoSe₂
CuSe₂ → CuInSe₂
Cu→CuSe→CuSe₂

(Cu + In)/Mo
\[(\text{Cu+In})/\text{Mo Selenization}\]

\[
\text{Cu/In} \rightarrow \text{CuSe} \rightarrow \text{CuSe}_2 \rightarrow \text{CuInSe}_2
\]
Isothermal Selenization

Temperature = 280 °C

Assumption for kinetic analysis

- Largest peak area = 100% reaction
- Fractional reaction = normalized peak area
Kinetic Analysis

\[\ln[-\ln(1-\alpha)] = n \ln(t) + n \ln k \]

Analysis suggests one-dimensional diffusion controlled reaction
DICTRA Modeling

Concentration profile

Diffusion models

Solve the multi-component diffusion equations

Diffusion coefficients

\[D = M \cdot \frac{\partial \mu}{\partial c} \]

Database

Mobility

DICTRA

Gibbs energy

Thermo-Calc
Assumption:

- Driving force: Gradient of Se chemical potential
- Control step: Diffusion of Se thru CIS layer
- Simplified pseudo-binary reaction: $\text{Culn} + 2\text{Se} \rightarrow \text{CulnSe}_2$

Instead of: $m\text{Cu}_2\text{In} + n\text{CuIn} + m\text{In} + (4m+2n)\text{Se} \rightarrow (2m+n)\text{CuInSe}_2$
Cu-In Thermodynamic Database

H. S. Liu, et al., J. Phase Equilib. 23 (2002) 409
DICTRA Optimization Results

Mobility parameter in DICTRA

\[MQ = -Q_B + RT\ln(M_B^0) \]

- \(Q_B \): activation enthalpy
 \((= 136,725 \text{ J/mol}) \)

- \(M_B^0 \): frequency factor
 \((= 0.01406) \)
Summary

- *In-situ* HT-XRD was successfully employed to investigate the reaction pathways and kinetics of binary and ternary diffusion couples.

- Kinetic data was used to get Se mobility database using DICTRA optimization.

- Systematic efforts on Cu-In-Ga-Se diffusion database establishment will be necessary to optimize high quality CIGS formation process.
Appendix
Region | Equilibrium phases
--- | ---
1 | α-ClSe$_2$ + α-Cu + β-Cu$_2$Se
2 | α-ClSe$_2$ + α-Cu + Cu$_7$In$_3$
3 | α-ClSe$_2$ + Cu$_2$In + Cu$_7$In$_3$
4 | α-ClSe$_2$ + Cu$_2$In + In$_4$Se$_3$
5 | α-ClSe$_2$ + InSe + In$_4$Se$_3$
6 | α-ClSe$_2$ + InSe + δ-CuInSe$_2$
7 | α-ClSe$_2$ + β-CuIn$_3$Se$_5$ + δ-CuInSe$_2$
8 | α-ClSe$_2$ + β-CuIn$_3$Se$_5$ + Liquid
9 | α-ClSe$_2$ + β-Cu$_2$Se + Liquid

Wide composition tolerance!!

$x(Cu) = 21$-25 at.%

Isothermal section at 500 °C
Best Efficiency of Solar Cells

- **Multijunction Concentrators**
 - ▼ Three-junction (2-terminal, monolithic)
 - ▲ Two-junction (2-terminal, monolithic)

- **Crystalline Si Cells**
 - ■ Single crystal
 - □ Multicrystalline
 - ◼ Thin Si

- **Thin Film Technologies**
 - • Cu(In,Ga)Se₂
 - ○ CdTe
 - ○ Amorphous Si:H (stabilized)

- **Emerging PV**
 - ◤ Organic cells

Institute of Energy Conversion
University of Delaware

NIST Diffusion Workshop
May 12, 2008
Ga addition?

Lattice constants

<table>
<thead>
<tr>
<th>Composition</th>
<th>Lattice constant (a), nm</th>
<th>Lattice constant (c), nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuInSe$_2$</td>
<td>0.5784</td>
<td>1.1614</td>
</tr>
<tr>
<td>CuGaSe$_2$</td>
<td>0.5596</td>
<td>1.1002</td>
</tr>
</tbody>
</table>

Bandgap energy

$E_g(x) = 1.018 + 0.575x + 0.108x^2$

Absorption coefficient

<table>
<thead>
<tr>
<th>Composition</th>
<th>α (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuInSe$_2$</td>
<td>$\sim 1 \times 10^5$</td>
</tr>
<tr>
<td>CuGaSe$_2$</td>
<td>$>3 \times 10^4$</td>
</tr>
</tbody>
</table>
Binary Phase Diagram

Cu-Se

Ga-Se

Institute of Energy Conversion
University of Delaware

NIST Diffusion Workshop
May 12, 2008
Diffusivity and Mobility

Diffusion coefficients are obtained as a product of a thermodynamic ($\frac{\partial \mu}{\partial c}$) and a kinetic ($M$) factor.

\[D = M \cdot \frac{\partial \mu}{\partial c} \]

\[M = M_b + \exp \left(\frac{M_q}{RT} \right) \]
Formation of CIS by selenization of Cu+In precursor

- Driving force: Gradient of chemical potential of Se
- Control step: Diffusion of Se thru CIS layer
- Key data:
 - Chemical potential of Se in different phases
 - Mobility of Se in CIS phase

- DICTRA optimization results:
 $M_b = 0$
 $M_q = -168000 \text{ J/mol}$

M_q remains constant for the entire range of experimental temperatures.