

Tracer Diffusivities from First-principles

Manjeera Mantina, DongEung Kim, Swetha Ganeshan, Long-Qing Chen, Zi-Kui Liu

OUTLINE

- Tracer diffusion in cubic systems
 - Theory
 - Diffusion results in fcc and bcc
- Tracer diffusion in hcp
 - Theory
 - Diffusion results
- Summary

CUBIC SYSTEMS

Vacancy-mediated tracer (host or impurity) diffusion

$$D = fa^2 Cw$$

f – correlation factor

a – lattice parameter

C – vacancy concentration adjacent to tracer

w – atom jump frequency

VACANCY CONCENTRAION

For self-diffusion:

$$C = \exp(-\frac{\Delta G_f}{k_B T})$$

 ΔG_{f} - free energy of vacancy formation in pure element

For impurity diffusion:

$$C = \exp(-\frac{\Delta G_f - \Delta G_b}{k_B T})$$

 ΔG_b - free energy of solute-vacancy binding

ATOM JUMP FREQUENCY

For host or impurity atom jump

$$w = \frac{k_{B}T}{h} \exp(-\frac{H_{TS}^{*} - H_{IS}}{k_{B}T}) \exp(\frac{S_{TS}^{*} - S_{IS}}{k_{B}})$$

- $X_{\rm IS}\,$ thermodynamic property of initial state before the jump (from all degrees of freedom)
- X_{TS}^{*} thermodynamic property of transition state after ignoring the unstable vibrational mode

CORRELATION FACTOR

- Pure element: single jump frequency constant value
 determined by Compaan and Haven ^[1].
- With impurity definition in terms of the different jump frequencies, given by Manning ^[2] based on fivefrequency model
- eg: for solute diffusion in fcc $f = \frac{1+3.5F(w_4/w_0)(w_3/w_1)}{1+(w_2/w_1)+3.5F(w_4/w_0)(w_3/w_1)}$

$$F(x) = 1 - \frac{1}{7} \frac{10x^4 + 180.5x^3 + 927x^2 + 1341}{2x^4 + 40.2x^3 + 254x^2 + 597x + 435} \quad \text{where } x = \frac{w_4}{w_0}$$

[1] Compaan, K., Haven, Y., *Trans. Faraday Soc.* 52, 786 (1956)
[2] Manning, J.R., *Phys Rev.* 136 A1758 (1964)

FIRST-PRINCIPLES

VASP – PAW

- System size 32 lattice sites
- Fully relaxed perfect and equilibrium configurations
 - Volume, shape and atomic positions relaxed
- Saddle point and minimum energy saddle configuration
 - Nudged elastic band method (NEB)
- Phonon frequencies for the normal modes are determined using Supercell method (ATAT)

SELF-DIFFUSION IN FCC

 LDA (without surface correction) yields diffusion results in good agreement with measurements.

SELF-DIFFUSION IN BCC

Possible di-vacancy contributions to diffusion.
 Diffusion from di-vacancies being determined.

IMPURITY DIFFUSION IN FCC

- 3d transition metals diffusion in AI LDA+U
- U parameter determined from diffusion results matching with reliable experimental data

3d DIFFUSION IN FCC Al

- Al with Fe, Cr and Mn impurities is magnetic.
- Localization of charges around 3d elements with partially filled d shell causes high activation energies.
- Correlation factor f = 1 for the partially filled d-shell elements

IMPURITY DIFFUSION IN BCC

For the case of these impurity diffusion coefficients correlation factor is expected to be close to unity.

IMPURITY DIFFUSION IN BCC

 Correlation factor for Ta diffusion in Mo calculated and the value is obtained to be 0.4 at room temperature.

ANISOTROPIC SYSTEM - HCP

 Vacancy-mediated diffusion of tracer (host or impurity) in hcp lattice is given by (hexagonal c direction along z-axis)

$$D_{x} = \frac{1}{2}Ca^{2}(3w_{A}f_{Ax} + w_{B}f_{Bx}) \quad a,c - \text{lattice parameters}$$

$$D_{z} = \frac{3}{4}Cc^{2}w_{B}f_{Bz} \quad C - \text{vacancy concentration}$$

$$W_{A} - \text{frequency for jump with}$$

 w_A – frequency for jump within a basal plane

 w_B –frequency for jump between adjacent basal planes

 f_{ii} – partial correlation factors

SELF-DIFFUSION IN HCP

 Correlation factor in pure hcp – function of ratio of the two jump frequencies – tables given by Mullen ^[3]

[3] Mullen, J.G., Phys Rev. 124 1723 (1961)

IMPURITY DIFFUSION IN HCP

Cd DIFFUSION IN Mg **Sn DIFFUSION IN Mg** 10^{-11} -LDA - D 🛛 -LDA D || $\int_{\text{C}}^{\text{10}^{-12}}$ Exp - Combronde and Brebec - D || Exp - Combronde and Brebek D || • Exp - Combronde and Brebek - D Exp - Combronde and Brebek D | O 10⁻¹³ 10^{-16} 10^{-17} 1.2 1.8 1.41.5 0.8 1 1.4 1.6 2 0.9 1 1.11.2 1.3 1.6 1000/T (1/K) 1000/T (1/K)

 Correlation factors for impurity diffusion in hcp Mg expected to be ~ 1.

SUMMARY

- First-principles procedure to calculate selfdiffusion coefficient ^[4] extended to fcc, bcc, hcp crystal systems.
- Impurity diffusion coefficients calculated including their correlation factors.
- Physical understanding of the low diffusivities of 3d elements in Al obtained from the +U calculations.
- Procedure being extended to di-vacancy mechanism.

[4] Mantina, M., Wang, Y., et al. Phys Rev Lett. in press.

THANK YOU ALL FOR LISTENING

SELF-DIFFUSION IN FCC Ag

- Curvature in the diffusion plot is due to di-vacancy contributions at high temperatures
- Include di-vacancy equations