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Background

Ferritic 9-12 % Cr steels

Avedøre (Copenhagen)
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The life-time of is limited by
- Creep 
- Oxidation.
Design requirement: at least 100 000 h at 100 MPa
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Aim of work

Jonsson et al. 2006
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Aim of work

Predict oxidation:
- Sharp-interface methods – DICTRA
- Diffuse-interface methods – phase-field

For example:
- Oxidation of steels
- Degradation of superalloy coatings

We need:
- Mathematical expressions for flux as function of 

gradients in composition or chemical potentials.
- Parameters that characterize a given material
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Contents

• General approach.
• Model for diffusion in magnetite.
• Optimization of mobilities in magnetite.
• Modelling of diffusion in hematite, Fe2O3.
• Modelling of diffusion in wustite, FeO.
• Chemical diffusivity in magnetite and wustite.
• Simulations of oxidation at 600°C.
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General approach

c
LD

x
cD

x
c

c
L

x
LJ

∂
∂

=

∂
∂

−=
∂
∂

∂
∂

−=
∂
∂

−=

μ

μμ
:Flux

Kinetic parameters 
from model.

Darken’s thermodynamic factor, 
e.g. from Calphad analysis.

Base models on a vacancy mechanism!
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The Fe-O system

• Calculated from 
Sundman 1991.
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Major contributions to diffusion in 
magnetite

(Fe+2,Fe+3)1 (Fe+2,Fe+3,Va)2 (Va,Fe+2)2 (O-2)4

Thermodynamic model (Sundman 1991):
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Fe diffusion in lattice-fixed 
frame of reference 
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Optimization in magnetite

• Jump distance on 3rd sublattice 
twice that on 2nd. 

• Constraint on frequency factors!
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Absolute reaction rate theory:

Optimized parameters:
(Fe+2,Fe+3)1 (Fe+2,Fe+3,Va)2 (Va,Fe+2)2 (O-2)4

octahedral fcctetrahedral 
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Experimental data

• Dieckmann & Schmalzried 900-1400°C

• Peterson et. al. 1200°C

• Aggarwal & Dieckmann 1200°C

• Becker et. al. 1200-1400°C

Tracer diffusion coefficients in magnetite
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Optimization of mobilities
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Extrapolation to low 
temperature

• Calculated bulk tracer 
diffusion at 500°C compared 
to experimental values 
(single crystal).

• Not used in optimization.
• Bulk high T data 

extrapolates well to low 
temperature.
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Oxygen diffusion in magnetite
Yields a Kirkendall effect and porosity!
Yields the ”inward growing” oxide!
The experimental information shows a similar behaviour as for 
Fe.
This cannot be represented by random oxygen vacancies and a 
constant oxygen mobility.

Possible physical picture:
Low oxygen potentials favours oxygen vacancies -> higher 
diffusivity.
High oxygen potentials lead to less Fe on the interstials which 
favours oxygen vacancies (vacancy-vacancy coupling)-> 
higher diffusivity.
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O diffusion in lattice-fixed 
frame of reference 
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Alloy elements in magnetite – lattice fixed 
frame of reference 

Töpfer et.al. 1995
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Diffusion in hematite

• Same approach as for spinel
• Thermodynamic model:

• For vacancy mechanism on 
interstitial sublattice in the anion 
fixed frame of reference:

zV
MyyJ Fe

m
FeVaFeVaFe ∂

∂
−=

μ1''''''

''''''
* FeVaFeVaFe

MyRTyD ≅

(Fe+2,Fe+3)2(Va,Fe+3)1 (O-2)3



Industrial Engineering and Management 19

Diffusion workshop
12-13 May 2008
NIST, USA

Literature data Fe2O3

• Atkinson and Taylor (m2/s):

High T > 900°C 

Low T < 900°C

• Hoshino and Peterson (m2/s):

• Amami et. al (m2/s):
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• Comparison Cr in Cr2O3 Sabioni et. al.:
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Literature data Fe2O3

• Himmel, and Chang and 
Wagner gives (red line):

• Fixing freq. factor to 10-6

gives (blue line):
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Absolute reaction rate reminder:
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• Why the anomolous activation 
energy and prefactor?
– Large scatter in experimental 

information.
– Cr diffusion in Cr2O3 more complex 

temperature dependence.
– More complex defects?
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Diffusion in FeO

• Thermodynamic model

• For vacancy mechanism on 
cation sublattice in the anion 
fixed frame of reference:
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Tracer diffusion in FeO
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Experiments from Chen and Peterson, J. Phys. Solids, 36, 1975.
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Chemical diffusivity
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m2/s

Mole fraction Fe

Calculated chemical diffusivity in magnetite

• Red line shows stable 
composition range of 
spinel.

• Triangles show measured 
chemical diffusivities at 
1508K.

• Blue line shows 
experimental temperature.

• Values are high, but still in 
reasonable agreement with 
experiments.
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Calculated chemical diffusivity in wustite
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• 600°C, P02=0.05, 24h.
• fgb==δ/D, D grain size, δ≈5Å gb thickness.
• Dmag ≈ 3µm, Dcor ≈ 0.1µm.
• Assumption: Activation energy for diffusion 

in gb is half that of bulk diffusion.
• Deff=(1- fgb)Dbulk+ fgbDgb

• Gb diffusion assumed only in magnetite and 
hematite.

• No diffusion of oxygen.

Simulation 1: Fe-O, 600°C
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Simulation 1: oxide 
thicknesses

Magnetite HematiteWustite

27 µm 0.18 µmCalculated: 45 µm
Experimental: 21 µm 11 µm 2 µm
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• Conditions almost identical to simulation 1.
• Assumption: Activation energy for diffusion 

in gb is about 1/3 of that of bulk diffusion 
(instead of ½).

Simulation 2: Fe-O, 600°C
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Simulation 2: oxide 
thicknesses

Magnetite HematiteWustite

Calculated: 45 µm 10 µm 2 µm
Experimental: 21 µm 11 µm 2 µm
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Conclusions

• DICTRA can now handle diffusion in 
complex phases, e.g. oxides.

• Cation diffusion in the three iron 
oxides has been critically assessed.

• Grain boundary diffusion is taken 
into account in a simplified manner.

• Cr and oxygen diffusion is currently 
being added.
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