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A method is proposed for estimating the free energy of cation vacancy migration in alkali halides with NaCl
structure from macroscopic parameters. It is based on the calculation of the electrical and the dilatation work
during the migration of the cation. The dilatation work can be calculated from the elastic constants and the
migration volume corresponding to free-cation motion. By considering anharmonic effects the free energy is
calculated as function of temperature. In the high-temperature region the temperature-independent part of the
migration free energy and its temperature derivative give values which agree with the published values of the

migration enthalpy and entropy.

I. INTRODUCTION

The defect properties in sodium and potassium
halides, among the other alkali halides, are the
best understood. As for their conductivity mech-
anism, it is certain that the free-cation vacancies
have a higher mobility than the anion vacancies.
By dc conductivity or diffusion techniques the free
migration energy g}, required for the free-cation
motion can be determined with reasonable accura-
cy. On the other hand the theoretical calculation
of g, is still an open question. In this paper we
attempt an estimation of the migration enthalpy %},
and migration entropy s;, in the case of sodium and
potassium halides, using only macroscopic param-
eters such as elastic constants and the migration
volume AV,,.'™ This has been done in cesium
halides for room temperature with satisfactory
results.® (In the following we will drop the super-
script and the subscript in the symbols g7, %},
and s},.)

NaCl structure suggests that a vacancy G should
be filled by the migration of the cation E (Fig. 1).
Cation E during its route EKG passes through
saddle points X and X’ which are the centers of
the equilateral triangles AHF or HCF, respec-
tively.® Thus the migration free energy g for the
cation vacancy migration process should be equal
to the difference in the energy of the cation at
places X and E. This energy difference can be
divided as follows:

8=81+82, (1)

where g, g, are the electrical and dilatation work
(static deformation contribution), respectively.
The change in the vibration spectrum (vibration
contribution) gives a third term k727, In(w,/w}),
where w;, respectively, w), are the phonon fre-
quencies at the equilibrium position, respectively,
saddle point. We will come back to this contribu-
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tion later.
The first term can be calculated from the rela-

tion
g1=(1/€)(01x—015)e2/l, (2)

where = EH is the nearest-neighbor cation-anion
distance and ¢ is the dielectric constant. o is the
usual Madelung constant for the ion at £ minus

the term due to the vacancy at G, i.e., +1.748
+1/V2 =+2.455, while a, is the Madelung con-
stant for the ion at X (for a perfect crystal) minus
the contribution of the vacancies at £ and G. The
Madelung constant for the ion at X can be calculated
with the method of neutral cubes’ which gives

® Halogen Ion
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0 cation Vacancy
FIG. 1. Cation E during its motion E—G passes
through the saddle points X and X’ (the centers of the
equilateral triangles AHF and CHF).
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-0.1798. Hence
ay=-0.1798+3/V3+1/1=2.552,

The second term g, can be expressed® as
follows:

2,=5B0, (3)

where B is the bulk modulus 3(C,, + 2C,,) of the
crystal, Uthe local volume undergoing a strain
during migration of the cation and 0 its local
volume dilatation, i.e., the ratio of the migration
volume AV,,=(8g/8P), to the volume .. Although
Eq. (3) is valid only in the small-strain approxima-
tion it is used because of the great difficulties in
using higher terms. The method presented in this
paper is based on the assumption that U= U,»
where U, is the volume per atom.

II. g(0) AT ABSOLUTE ZERO (ENTHALPY)

We apply the above method to NaCl at 7=0. In-
serting in Eq. (2) e=¢,=2.25 and [,=2.79 A we
obtain g,(0)=0.22 eV. g,(0) can be calculated from
Eq. (3), using the values B,=0.273 x 10'? erg/cm?
and U,=1j. For 0 we insert 0.52 which is the ratio
of the experimental value* AV, =7 cm®/mole to the
volume % cm?®, taking 27 cm® as the molar volume.
We thus find g,(0) =0.50 eV and hence g(0) =0.22
+0.50=0.72 eV. If the dielectric constant were
taken as € =5.25 we would obtain alternatively
2(0)=0.60 eV.

The same method has been applied to other
sodium or potassium halides and the results are
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given in the first column of Table I. The values
of AV,,, and thus 6 have been experimentally de-
termined®!° but some of these results were ques-
tioned in later publications.*!' In the following we
use the value 0=0.52 as the most probable for all
alkali halides of NaCl structure.

III. TEMPERATURE VARIATION OF g

Equation (1) permits the evaluation of g for any
temperature. At 7=0 it gives

8(0)=(1/e,, Nay - ag)e?/l,+cByv,, (4)
where CE%GZ is assumed independent of tempera-
ture. By substituting the value of ¢, obtained
from Eq. (4), into Eq. (3), Eq. (1) gives

g=(1/e Nay - agye?/l

+[g(0) = (e, Jay - az)e*/1,](By0) " Bo.
(5)

I and U can be expressed from the volume expan-
sion coefficient 8. By definition we have

which give
T
V="1,exp f gdT
0

(6)

and

TABLE I. Values of the migration energy, enthalpy, and entropy for different sodium and

potassium halides.

1 2 3 4 5
£(0) (eV) g(0) BY/B, (eV) hexp (€V) s/k Sexp’k
NaF 0.88 0.90 0.872 cee
NaCl 0.72 0.74 0.72, ® 0.715, ¢ 0.6594 2.50 2.07%, 3.3°¢
NaBr  0.65 0.66 0.622 oo v
Nal 0.59 0.60 0.57°¢ cee
KF 0.83 0.85 0.84, f 0.83° cee
KC1 0.73 0.75 0.73,% 0.75, ¢ 0.665-0.6761 2.31 1.90, ©2.62-2.65%
KBr 0.67 0.68 0.70, ¥ 0.65! 2 1.9%, 1,28k
KI 0.63 0.64 0.63, ™ 0.758°¢ 1.7, 1.66°, 1.58™
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I= zoeprOTés dT) . (7)

The combination of Eqgs. (5)—(7) gives
B T
g=g(0) —exp (f ﬁdT>»
BO 0

1 2 T
+€—-(ax - aE)f_exp‘1<f éﬁdT)

lO o

1 e? B T
- (ay —ap)——=—ex <f dT). 8
€uro X E 1, B, P ) B (8)

As the temperature variation of B, 8, and € is
experimentally known,'?™* we can calculate g for
any temperature from g(0). Figure 2 shows the
temperature dependence of g for KC1, NaCl, and
KBr. The curves for the other alkali halides
are similar.

Figure 2 shows that g at high temperatures is a
linear function of 7 which can be written

g=g"(0) -sT, (9)

where g’(0) represents the intercept of the vertical
axis with the extension of the straight line of Fig.
2. It is easy to obtain an analytical expression of
£’(0) from the fact that B is a linear function of T
at high temperatures'® and can be written
B=B})-bT, where B[ represents the intercept

of the linear extension of B. Inserting this ex-
pression into Eq. (8) and setting 7=0 we get

£'(0)=g(0)B!/B, +g,(0)(1 - B}/B,) .

As g(0), respectively, g,(0), is of the order of
0.7 eV, respectively, 0.2 eV, and the ratio B}/B,
is of the order of 1.03, the second term can be
disregarded thus giving

060+

T—="°K

(o] " 2(‘)0 4(50 660 " 8(")0
FIG. 2. Temperature variation of the migration free
energy for KCl, NaCl, and Kbr.

g'(0)=g(0)BL/B,. (10)

A combination of Egs. (9) and (10) gives for g at
high temperatures

g=g(0)B!/B, - sT. (11)

IV. DISCUSSION

In the extrinsic region of the conductivity experi-
ments, o7 is proportional to the factor
exp(—g/KT).

Thus we have

oT = (4ne?l®v/k) exp(-g/kT) , (12)

where v is taken arbitrarily as the Debye fre-
quency. A similar expression holds for the dif-
fusion coefficient. A combination of (11) and (12)
gives

oT =(4ne®1>v/k) exp(s/k) exp[ g (0)BL/RTB,] .
(13)

Until now experimental investigators, using Eq.
(12), plotted the function ¢7T vs 1/7T and determined
h from the slope assuming that it is independent
of T. They then determined the migrational
entropy from the intercept of the vertical axis.
The published values determined in this way will
receive the subscript exp.

Equation (13) clearly shows that the experi-
mentally measured slope of the curves 1n(oT)
=f(1/7T) gives g(0)B}/B,. In column 2 of Table
I we give the calculated values of g(0)B}/B, and
in column 3 the most recent experimental values
of k., They agree within a few percent. However
we recall that if we use for the calculation of g (0)
the €, value instead of ¢, the differences exceed
10%. A large number of older experimental®
values are not suitable for the comparison as they
scatter within an extended range for each material.

Equation (13) further shows that the intercept of
the vertical axis in the graph of In(¢7) vs 1/7T
gives information on the value of s which should
be equal to s, .. The values of s at high tempera-
tures are found by solving Eq. (8) graphically and
determining its slope according to Eq. (11). The
results are listed in column 4. In column 5 we
give the most recent values of s,, /k. We notice
that they agree reasonably with s/k. If the s
values were found larger than s it would mean
that Eq. (1) should have an important third term
due to vibrational entropy. The agreement be-
tween s, and s shows that it is unimportant. To
the best of our knowledge its theoretical evaluation
has not been attempted.
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Although the assumptions upon which the present

calculation is based are undoubtedly crude ap-
proximations to the real situation, the results
agree sufficiently with the experimental values,
so as to justify their presentation.

Note added in proof. At very high temperatures
(higher than those of Fig. 2), Eq. (8) shows that
both % and s depend on T.
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