Atomistic simulations with applications to Si and Ge systems

J. Hickman

NRC Postdoctoral fellow MML NIST: Gaithersburg MD

2018 Atomistic Simulations for Industrial Needs Workshop August 01-03, Rockville, MD

Presentation Overview

- Physically informed neural network (PINN) interatomic potentials (Mishin 2017)
 - Motivation and Introduction
 - Overview of potential model
 - Training set generation
 - Potential Development/training process
 - Si PINN results
 - •AI PINN results
 - Future work (SiGe)

Introduction

Motivation

Types of interatomic potentials

Traditional interatomic potential

Fit or "train" the potential parameters using experimental and DFT data

Machine learning potentials -

Approximate PES via DFT energy or force interpolation

- Gaussian process regression
- Interpolating moving least squares
- Kernel ridge regression
- Compressed sensing

Artificial neural network (ANN) potentials

Types of machine learning applications

Neural networks-1

Artificial neuron

Artificial neural network

Neural networks-2

Artificial neural network potentials

Potential model comparison

Traditional interatomic potential:	Pros	<u>Cons</u>
Atom <i>i</i> • • Neighboring atoms ($\mathbf{r}_1,, \mathbf{r}_n$) • Interatomic potential parameters $p_1,, p_m$ • Other other total other total o	 Very fast Decent extrapolation Potential models derived from physics 	 Difficult to train/fit requires intuition Hard to improve upon once finalized Accuracy limitations
$\underbrace{\overset{\text{(Mathematical" or "straight NN potential:}}_{\text{(Mathematical structural parameters}} \rightarrow \underbrace{\overset{\text{(Neural parameters}}_{\text{(network)}} \rightarrow \underbrace{\overset{\text{(Neural parameters}}_{\text{(Neural atoms)}} \rightarrow \underbrace{\overset{\text{(Neural atoms)}}_{\text{(Neural atoms)}} \rightarrow \overset{\text{(Neural at$	 Fast relative to DFT DFT level accuracy (~1-5 mEv) within training set Relatively straight forward/routine to train/fit Systematic improvement (add more data) 	 Slow relative to traditional potentials Bad extrapolation
$\begin{array}{c} \text{Atom } i \\ \bullet \\ \downarrow \\ (G_1,, G_M) \\ \text{Neighboring} \\ \text{atoms}(\mathbf{r}_1,, \mathbf{r}_n) \end{array} \xrightarrow[\text{Neural } \text{Neural } \text{Neural } \text{Potential} \\ \text{network } \\ \bullet \\ Potential \\ \text{Potential } \\ \text{Potential } \\ \text{Neighboring} \\ \text{other } \\ \text{other } \\ \text{atoms} \\ (\mathbf{r}_1,, \mathbf{r}_n) \end{array}$	 Same as straight NN Decent extrapolation Potential models derived from physics 	 Slow relative to traditional potentials

PINN potential: Structure parameters

NIST

PINN potential: BOP format (Mishin: 2017)

8 Adjustable parameter which are controlled by the outputs of the NN $A_i, B_i, \alpha_i, \beta_i, a_i, h_i, \lambda_i$ and σ_i

Silicon PINN potential (preliminary results)

Training/test set generation

Stable structure: (Diamond)

Alternative structures:

~14 alternate structures

• FCC, BCC, HEX, HCP, SC, Liquid, Amorphous ... etc

NIS

DFT calculation details

- Functional/PP: PBE/PAW
- ENCUT=600
- ~4300 structures
- block size 1-96 atoms
- k-point convergence tests for each group

Non-equilibrium sampling

- Isotropic expansions/compressions
- Random local atomic perturbations
- Anisotropic box variations

~27 different defects

Vacancies, Various self interstitials, Surfaces, Stacking faults

Two dimensional structures:

6 silicene allotropes

~18 atomic clusters

Train set coverage

Training and test set

Si PINN potential details

• DFT energy shifted by 0.79502 eV/atom → DC=4.63 (eV/atom)

Start many NN's from different randomized IC, optimize and choose best

Fitting code reference:("To be published") G. P. Purja Pun(1), R. Batra(2), R.
Ramprasad (3) and Y. Mishin(1)(1) George Mason Univ., (2) Univ. Connecticut, (3) Georgia Tech

Select Si PINN potential equations of state

Results: Silicon PINN Potential

Si PINN comparison with traditional potential

application to thermal stability of silicene." *Physical Review B* 95.22 (2017): 224103. 20

<u>Aluminum</u>

("To be published") G. P. Purja Pun(1), R. Batra(2), R. Ramprasad (3) and Y. Mishin(1) (1) George Mason Univ., (2) Univ. Connecticut, (3) Georgia Tech

Aluminum NN and PINN Potential

FCC

BCC

HCP

 \mathbf{SC}

DC

FCC

A15*

HEX*

FCC*

FCC*

<u>Alternate</u>

structures (0K)

isotropic strain at 0 K

uniaxial $\langle 100 \rangle$ at 0 K

isotropic strain at 0 K

isotropic strain at 0 K

uniaxial $\langle 100 \rangle$ at 0 K

uniaxial $\langle 111 \rangle$ at 0 K

Training/test set:

Stable Phase (ab-initio MD)

T=700 K, 1200 K, 2500 K

expansion/compression

Database source:

V. Botu, R. Batra, J. Chapman, and R. Ramprasad. Machine learning force fields: Construction, validation, and outlook. *The Journal of Physical Chemistry C*, 121(1):511– 522, 01 2017. URL: https://doi.org/10.1021/acs.jpcc.6b10908, doi:10.1021/ acs.jpcc.6b10908.

Full set=Test+Training=127,592 atoms (3649 structures) (random subsets) ↓ ↓ 108,052 atoms (3154 structures) 19,540 atoms (495 structures)

GB 111

GB 210

GB 310

GB 320

GB 510

1 Vac

SF(211),(111)

1 adatom on (100)

2 adatoms on (111)

Dimer adatom on (111)

Trimer adatom on (111)

Methodological details:

- Both straight and physical NN
- DFT energy shifted by 0.38446 eV/atom

Fit	Size	N_P	N_{Gi}	N_{r_0}	
NN	$16 \times 16 \times 1$	1265	5	12	
Physical NN	$15 \times 15 \times 8$	1283	5	12	
NN fitting parameters Cutoff function parameters (global)					
$r_c = 0$ $d = 0$		23			

<u>Clusters+Defects</u>

(ab-initio MD)

Surface 100

Surface 110

Surface 111

Surface 200

Surface 311

Surface 333

Results: Aluminum NN and PINN Potential

Results: Aluminum NN and PINN Potential

Additional Properties:

NIST

Bond-angle (deg)

Property	Ab initio	NN	Physical NN	Property	Ab initio	NN	Physical NN
$E_0 \ (eV/atom)$	3.7480^{a}	-3.3609	-3.3611	E_v^f (eV)	$0.6646 - 1.3458^c; 0.7^e$	0.6558	0.7120
a_0 (Å)	$4.039^{a,d}; 3.9725 - 4.0676^c$	4.0431	4.0398	E_{v}^{f} (eV) unrelaxed	0.78^{e}	0.7412	0.7830
B (GPa)	$83^a; 81^f$	79	81	$E_I^f (T_d) (eV)$	$2.2001 – 3.2941^c$	2.7105	2.9133
c_{11} (GPa)	$104^a; 103 – 106^d$	109	118	$E_I^f (O_h) (eV)$	$2.5313 – 2.9485^{c}$	2.1573	2.5480
c_{12} (GPa)	$73^a; 57–66^d$	65	62	$E_I^f \langle 100 \rangle \ (\text{eV})$	$2.2953 – 2.6073^c$	1.8189	2.0558
c_{44} (GPa)	$32^a; \ 28 – 33^d$	26	30	$E_I^f \langle 110 \rangle \ (\text{eV})$	$2.5432 – 2.9809^{c}$	2.7924	2.6725
$\gamma_s(100)~({ m Jm}^{-2})$	0.92^{b}	0.8974	0.9047	$E_I^{f} \langle 111 \rangle \text{ (eV)}$	$2.6793 – 3.1821^c$	2.6073	2.8375
$\gamma_s(110) \ ({\rm Jm}^{-2})$	0.98^{b}	1.0089	0.9644	$\gamma_{\rm SF}~({ m mJ/m^2})$	145.67^{g}	122	130
$\gamma_s(111) ({\rm Jm}^{-2})$	0.80^{b}	0.8471	0.8238	$\gamma_{ m us}~({ m mJ/m^2})$		130	140

Future work-2

NIST

Conclusions

- Developed a new silicon interatomic potential using the new PINN potential format
- •Even in preliminary stage we are obtaining excellent agreement with the DFT energies
- Current potential reproduces DFT data around 300x better than current traditional potentials
- Investigating methodological considerations to streamlining the fitting procedure for faster future development

Acknowledgements

- Ganga Purja Pun
- Kamal Choudhary
- Vesselin Yamakov
- Francesca Tavazza
- Yuri MishinGMU,NRC,NIST

U.S. Department of Commerce

Image sources:

- https://www.tf.uni-kiel.de/matwis/amat/iss/kap_5/backbone/r5_3_3.html
- https://www.wordstream.com/blog/ws/2017/07/28/machine-learning-applications
- https://www.researchgate.net/figure/268158499_fig1_Figure-1-Phase-diagram-of-SiGe-alloys-showing-separation-of-thesolidus-and-liquidus
- <u>http://evolution.skf.com/us/bearing-research-going-to-the-atomic-scale</u>
- /<u>https://www.chegg.com/homework-help/questions-and-answers/consider-concentric-metal-sphere-spherical-shells-shown-figure--innermost-solid-sphere-rad-q4808250</u>

Stillinger, Frank H., and Thomas A. Weber. "Computer simulation of local order in condensed phases of silicon." *Physical review B* 31.8 (1985): 5262. ("To be published") G. P. Purja Pun(1), R. Batra(2), R. Ramprasad (3) and Y. Mishin(1): (1) George Mason Univ., (2) Univ. Connecticut, (3) Georgia Tech Pun, GP Purja, and Y. Mishin. "Optimized interatomic potential for silicon and its application to thermal stability of silicene." *Physical Review B* 95.22 (2017): 224103.

Si PINN comparison with of properties

Properties:

	Property	Experiment	DFT
Total number of clusters: 210	$\overline{E_{c}}$ (eV/atom)	4.63°	4.84 ^r
Check total number of configurations: 1640	$a(\mathbf{A})$	5 430ª	5 451
Check total RMSError: 0.007201	$u(\Pi)$	165 ^a · 167 40 ^b	5.151
deformation = 0.99976546	$c_{11}(\mathbf{GP}_{0})$	$6/a \cdot 65 22^{b}$	
equil. energy of diam structure = -4.62903632 (eV/atom)	c_{12} (OFa)	04, 05.25	
equil. volume of diam structure = 20.429451 (A^3/atom)	c_{44} (GPa)	19.2 , 19.51	
energy of (100) surface = 2.183343 (J/m^2)	$v_{\rm max}$ (IHZ)	15.7	
energy of (110) surface = 1.776560 ($1/m^{2}$)	vacancy: Γ	0 ci	2.17m 2.60t
energy of (111) surface = 1 314244 ($1/m^{2}$)	$E_v^{-1}(T_d)$ (eV)	3.6	3.17"; 3.69
v_{acapcy} formation on $c_{ay} = 3.20324940$ (oV) (-4.621204030+03)			$3.29-4.3^{\text{m}}$; $3.70-3.84^{\text{s}}$
The interactive interaction c_{12} and c_{12} (a)	$E_v^{\mathbf{I}}(D_{3d}) (\mathrm{eV})$		3.97 ^t ; 4.29 ^v ; 4.37 ⁿ
10 (interstitut formation energy = 4.015017 (eV)			$3.67 - 3.70^{s}$; 5.023^{1}
<100> dumbbell formation energy = 8.435771 (eV)	Interstitials:		
<110> dumbbell formation energy = 23.287577 (eV)	E_i^{f} (hex) (eV)		$3.31-5^{\rm h}$; $2.87-3.80^{\rm s}$
HEX interstitial formation energy = 4.287206 (eV)	$E_i^{f}(T_d)$ (eV)		$3.43-6^{h}$; $3.43-5.10^{s}$
bond-center interstitial formation energy = 72.593833 (eV)	E_i^{f} (B) (eV)		4–5 ^h
bulk modulus = 97.181035 (GPa)	$E_i^f \langle 110 \rangle (eV)$		$3.31 - 3.84^{h}$; $2.87 - 3.84^{s}$
c11 = 125.226780 (GPa)	Surface energy γ_s ($J m^{-2}$):	
shear modulus = 42.065657 (GPa)	{111}	1.24 ^q ; 1.23 ^p	1.57 ¹ ; 1.74 ^f
c12 = 83.161123 (GPa)	{100}	·	2.14^{1} ; 2.39^{f} ; 2.36^{k}
c44 = 105.045461 (GPa)	$\{100\}_{2\times 1}$	1.36 ^p	$1.71^{g}; 1.45^{f}; 1.51^{k}$
EXECUTION TIME ON 32 CPU(S): 191.889600 s	{110}	1.43 ^p	1.75 ^k
	Melting:		
	$T_m(K)$	1687	

 $\Delta V_m/V_{
m solid}~(\%)$

L (kJ/mol)

-5.1^a 50.6^a

Training and test set

1	Δ1			25	64	1600	1600
2	Δ2			65	64	4160	5760
2	R1	DC-P		90	2	180	5940
4	B10	HCP-P	UNPERTURBED+TS0	70	2	140	6080
5	B11	DC-P	UNPERTURBED+UNIAXIAL+100	35	2	70	6150
6	B14	DC-C	UNPERTURBED+UNIAXIAL+111	25	48	1200	7350
7	B15	DC-C	PERTURBED+ISO	170	64	10880	18230
8	B17	SH-P-(HEX)	UNPERTURBED+ISO	70	1	70	18300
9	B2	DC-P	UNPERTURBED+FINE+ISO	80	2	160	18460
10	B20	Wurtzite-P	UNPERTURBED+ANISO	90	4	360	18820
11	B21	ST12-P	UNPERTURBED+ISO	70	12	840	19660
12	B23	FCC-P	PERTURBED+ISO	20	8	160	19820
13	B24	HCP-P	PERTURBED+ANISO	20	16	320	20140
14	B25	BCC-P	PERTURBED+ISO	20	8	160	20300
15	B26	SH-P-(HEX)	PERTURBED+ANISO	20	8	160	20460
16	B27	BSN-P	PERTURBED+ANISO	20	16	320	20780
17	B28	BC8-C	PERTURBED+ISO	5	128	640	21420
18	B29	Wurtzite-P	PERTURBED+ANISO	20	32	640	22060
19	B3	BCC-P	UNPERTURBED+ISO	90	1	90	22150
20	B30	ST12-P	PERTURBED+ANISO	10	96	960	23110
21	B31	DC-P	FINE-UNPERTURBED+SHEAR-2	250	2	500	23610
22	B32	DC-P	FINE-UNPERTURBED+100	250	2	500	24110
23	B33	DC-P	FINE-UNPERTURBED+SHEAR-1	250	2	500	24610
24	B4	SC-C	UNPERTURBED+ISO	90	1	90	24700
25	B5	BC8-C	UNPERTURBED+ISO	90	16	1440	26140
26	B6	BSN-P	UNPERTURBED+ISO	70	2	140	26280
27	B7	Wurtzite-P	UNPERTURBED+ISO	70	4	280	26560
28	88	CP46-C	UNPERTURBED+1SO	50	46	2300	28860
29	89		UNPERTURBED+150	90	1	90	28950
30	C11	SIS_2-PENTAMER-PYRAMID	UNPERTURBED+150	25	5	125	29075
31	C12	SIS_3-PENTAMER-BRIDGE		25	5	125	29200
32	C13	SIS_4-PENTAMER-BIPYRAMID		25	5	125	29325
33	C15	SIG_1-HEXAMER-CHAIR		25	6	150	29475
34	C16	SI6_Z-HEXAMER-OCTAHEDRON		25	6	150	29625
35	C18	SI6_4-HEXAMER-FACECAP		25	6	150	29775
36	C21	ST/_I-HEPTAMER-BI-PYRAMID		25	/	1/5	29950
37	022	SI8_I-UCTAMER-BI-PYRAMID		25	8	200	30150
- 38	L D	ST4 Z-TETRAMER-TD	UNPERTURBED+1S0	25	4	100	30250

Training and test set

39	C7	Si4_3-D4h-TETRAMER-SQUARE	UNPERTURBED+ISO	25	4	100	30350
40	C9	Si4_5-TETRAMER	UNPERTURBED+ISO	25	4	100	30450
41	D1	DC - C	1-VACANCY+PERTURBED+IS0	50	7	350	30800
42	D10	DC-C	110-INTERSTITIAL+PERTURBED+ISO	50	9	450	31250
43	D11	DC-C	2-VACANCY+PERTURBED+IS0	35	62	2170	33420
44	D12	DC-C	HEX-INTERSTITIAL+PERTURBED+ISO	35	65	2275	35695
45	D13	DC - C	Td-INTERSTITIAL+PERTURBED+ISO	35	65	2275	37970
46	D14	DC - C	B-INTERSTITIAL+PERTURBED+ISO	35	65	2275	40245
47	D15	DC-C	110-INTERSTITIAL+PERTURBED+ISO	35	65	2275	42520
48	D2	DC-C	1-VACANCY+PERTURBED+ISO	25	63	1575	44095
49	D3	DC-C	<-110><001>(110)+MESH	82	48	3936	48031
50	D4	DC - C	<010><001>(100)+MESH	116	32	3712	51743
51	D5	DC-C	<10-1><-12-1>(111)+MESH-GLIDE	106	96	10176	61919
52	D6	DC-C	<101><121>(111)+MESH-SHUFFLE	106	96	10176	72095
53	D7	DC-C	B-INTERSTITIAL+PERTURBED+ISO	50	9	450	72545
54	D8	DC-C	HEX-INTERSTITIAL+PERTURBED+ISO	50	9	450	72995
55	D9	DC-C	Td-INTERSTITIAL+PERTURBED+ISO	50	9	450	73445
56	L2	LIQUID	PERTURBED+ISO	65	64	4160	77605
57	S1	SI-SURFACE-(100)-R	PERTURBED+ISO	35	16	560	78165
58	S10	SI-SURFACE-(320)	PERTURBED+ISO	35	40	1400	79565
59	S11	SI-SURFACE-(321)	PERTURBED+ISO	35	36	1260	80825
60	S12	SI-SURFACE-(322)	PERTURBED+ISO	35	36	1260	82085
61	S2	SI-SURFACE-(110)-R	PERTURBED+ISO	35	16	560	82645
62	S3	SI-SURFACE-(111)-R	PERTURBED+ISO	35	24	840	83485
63	S4	SI-SURFACE-(111)	PERTURBED+ISO	35	24	840	84325
64	S5	SI-SURFACE-(210)	PERTURBED+ISO	35	20	700	85025
65	S6	SI-SURFACE-(211)	PERTURBED+ISO	35	24	840	85865
66	S8	SI-SURFACE-(310)	PERTURBED+ISO	35	24	840	86705
67	S9	SI-SURFACE-(311)	PERTURBED+ISO	35	18	630	87335
68	T1	SILICENE-1-LAYER-HONEYCOMB	UNPERTURBED+ISO	25	18	450	87785
69	T10	SILICENE-PLANAR-BILAYER-AA_p	PERTURBED+ISO	45	36	1620	89405
70	T11	SILICENE-PLANAR-BILAYER-AA_p	PERTURBED+ANISO	25	36	900	90305
71	T13	SILICENE-BUCKLED-BILAYER-AA^p	PERTURBED+ISO	45	36	1620	91925
72	T14	SILICENE-BUCKLED-BILAYER-AA^p	PERTURBED+ANISO	25	36	900	92825
73	T15	SILICENE-BUCKLED-BILAYER-AB	UNPERTURBED+ISO	25	36	900	93725
74	T16	SILICENE-BUCKLED-BILAYER-AB	PERTURBED+ISO	45	36	1620	95345
75	T17	SILICENE-BUCKLED-BILAYER-AB	PERTURBED+ANISO	25	36	900	96245
76	Τ2	SILICENE-1-LAYER-HONEYCOMB	PERTURBED+IS0	45	18	810	97055
77	Т3	SILICENE-1-LAYER-BUCKLED	UNPERTURBED+ISO	25	18	450	97505
78	T4	SILICENE-1-LAYER-BUCKLED	PERTURBED+IS0	45	18	810	98315
79	Т5	SILICENE-1-LAYER-BUCKLED	PERTURBED+ANISO	25	18	450	98765
80	Τ7	SILICENE-1-LAYER-DUMBELL	PERTURBED+IS0	44	63	2772	101537
81	Т8	SILICENE-1-LAYER-DUMBELL	PERTURBED+ANISO	25	63	1575	103112
82	Т9	SILICENE-PLANAR-BILAYER-AA D	UNPERTURBED+ISO	25	36	900	104012

Minimization algorithm Davidon–Fletcher–Powell formula

From Wikipedia, the free encyclopedia

The **Davidon–Fletcher–Powell formula** (or **DFP**; named after William C. Davidon, Roger Fletcher, and Michael J. D. Powell) finds the solution to the secant equation that is closest to the current estimate and satisfies the curvature condition (see below). It was the first quasi-Newton method to generalize the secant method to a multidimensional problem. This update maintains the symmetry and positive definiteness of the Hessian matrix.

Given a function f(x), its gradient (∇f), and positive-definite Hessian matrix B, the Taylor series is

$$f(x_k+s_k)=f(x_k)+
abla f(x_k)^Ts_k+rac{1}{2}s_k^TBs_k+\dots,$$

and the Taylor series of the gradient itself (secant equation)

$$abla f(x_k+s_k)=
abla f(x_k)+Bs_k+\dots$$

is used to update B.

The DFP formula finds a solution that is symmetric, positive-definite and closest to the current approximate value of B_k :

$$B_{k+1} = (I-\gamma_k y_k s_k^T) B_k (I-\gamma_k s_k y_k^T) + \gamma_k y_k y_k^T,$$

where

$$egin{aligned} y_k &=
abla f(x_k+s_k) -
abla f(x_k), \ \gamma_k &= rac{1}{y_k^T s_k}, \end{aligned}$$

and B_k is a symmetric and positive-definite matrix.

The corresponding update to the inverse Hessian approximation $H_k=B_k^{-1}$ is given by

$$H_{k+1} = H_k - rac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} + rac{s_k s_k^T}{y_k^T s_k}.$$

B is assumed to be positive-definite, and the vectors \boldsymbol{s}_k^T and \boldsymbol{y} must satisfy the curvature condition

$$s_k^T y_k = s_k^T B s_k > 0.$$

The DFP formula is quite effective, but it was soon superseded by the BFGS formula, which is its dual (interchanging the roles of *y* and *s*).

Elastic Constants

DFT PBE

https://www.ctcms.nist.gov/~knc6/jsmol/JVASP-1001.html

Elastic Constants

Results: Aluminum NN and PINN Potential

DFT energy (eV/atoms) (NN)

DFT energy (eV/atoms) (PINN)

Local structure parameter choice

Future work-1: Forward thinking method

K-fold validation

https://en.wikipedia.org/wiki/Cross-validation_(statistics)

Results: Aluminum PINN Potential

Group

NIST

42

DFT variation

DFT variation

Points

- Don't focus so much on details (wiggles,NN size)
- Say humans and animals rather than just animals
- pairwise repulsion, angular dependence, longer distance interactions, bond order effects, screening

