× Updated! Potentials that share interactions are now listed as related models.
Citation: G.-U. Jeong, and B.-J. Lee (2020), "Interatomic potentials for Pt-C and Pd-C systems and a study of structure-adsorption relationship in large Pt/graphene system", Computational Materials Science, 185, 109946. DOI: 10.1016/j.commatsci.2020.109946.
Abstract: Graphene-supported platinum (Pt) and palladium (Pd) nanoclusters have attracted attention as electrocatalysts for proton exchange membrane fuel cell (PEMFC) because of their high activity and resistance to CO poisoning. However, metal nanoparticles are weakly adsorbed to the graphene and easily migrate on the surface, causing sintering and loss of chemical activity. A thorough understanding of structure-adsorption relationship is important to design robust catalysts with high adsorption ability to stabilize metal nanoparticles, but this relationship is still not well understood, particularly in large scale systems (2–5 nm). Therefore, to investigate the structural evolution at atomic scale with atomistic simulations, we have developed interatomic potentials for the Pt-C and Pd-C binary systems, based on the second nearest-neighbor modified embedded-atom method (2NN MEAM) formalism. These potentials reproduce various fundamental properties of the alloy systems in reasonable agreement with the experimental data and first-principles calculations. Molecular dynamics simulations employing the 2NN MEAM potential were carried out to analyse structural factors that have decisive effect on the adsorption energy, by changing the symmetry of the nanoparticles and the configuration of the nanoparticles adsorbed to graphene. These factors were characterized via coordination numbers, number of Pt atoms in contact with the graphene and adsorption site. The results of our study suggest avenues for stabilizing and immobilizing metal clusters on graphene in large systems.

See Computed Properties
Notes: These potential files were obtained from http://cmse.postech.ac.kr/home_2nnmeam, accessed Nov 9, 2020.
Citation: K. Albe, K. Nordlund, and R.S. Averback (2002), "Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon", Physical Review B, 65(19), 195124. DOI: 10.1103/physrevb.65.195124.
Abstract: We propose an analytical interatomic potential for modeling platinum, carbon, and the platinum-carbon interaction using a single functional form. The ansatz chosen for this potential makes use of the fact that chemical bonding in both covalent systems and d-transition metals can be described in terms of the Pauling bond order. By adopting Brenner’s original bond-order potential for carbon [Phys. Rev. B 42, 9458 (1990)] we devise an analytical expression that has an equivalent form for describing the C-C/Pt-Pt/Pt-C interactions. It resembles, in the case of the pure metal interaction, an embedded-atom scheme, but includes angularity. The potential consequently provides an excellent description of the properties of Pt including the elastic anisotropy ratio. The parameters for both the Pt-Pt interaction and the Pt-C interaction are systematically adjusted using a combination of experimental and theoretical data, the latter being generated by total-energy calculations based on density-functional theory. This approach offers good chemical accuracy in describing all types of interactions, and has a wide applicability for modeling metal-semiconductor systems.

Date Created: October 5, 2010 | Last updated: June 09, 2022