Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: H. Zhou, D.E. Dickel, M.I. Baskes, S. Mun, and M. Asle Zaeem (2021), "A modified embedded-atom method interatomic potential for bismuth", Modelling and Simulation in Materials Science and Engineering, 29(6), 065008. DOI: 10.1088/1361-651x/ac095c.
Abstract: A semi-empirical interatomic potential for the post-transition metal, bismuth, is developed based on the second nearest-neighbor modified embedded-atom method (MEAM). The potential reproduces a range of physical properties, such as the lattice constant, cohesive energy, elastic constants, vacancy formation energy, surface energy, and the melting point of pure bismuth. The calculations are done for the rhombohedral ground state of Bi. The results show good agreement with density functional theory and experimental data. The developed MEAM potential for bismuth is useful for material and mechanical behavior studies of the pure material at different conditions and sets the stage for the development of interatomic potentials for bismuth alloys or other bismuth compounds.