× Updated! Potentials that share interactions are now listed as related models.

2016--Gibson-J-S-Srinivasan-S-G-Baskes-M-I-et-al--Ti

Citation: J.S. Gibson, S.G. Srinivasan, M.I. Baskes, R.E. Miller, and A.K. Wilson (2016), "A multi-state modified embedded atom method potential for titanium", Modelling and Simulation in Materials Science and Engineering, 25(1), 015010. DOI: 10.1088/1361-651x/25/1/015010.
Abstract: The continuing search for broadly applicable, predictive, and unique potential functions led to the invention of the multi-state modified embedded atom method (MS-MEAM) (Baskes et al 2007 Phys. Rev. B 75 094113). MS-MEAM replaced almost all of the prior arbitrary choices of the MEAM electron densities, embedding energy, pair potential, and angular screening functions by using first-principles computations of energy/volume relationships for multiple reference crystal structures and transformation paths connecting those reference structures. This strategy reasonably captured diverse interactions between atoms with variable coordinations in a face-centered-cubic (fcc)-stable copper system. However, a straightforward application of the original MS-MEAM framework to model technologically useful hexagonal-close-packed (hcp) metals proved elusive. This work describes the development of an hcp-stable/fcc-metastable MS-MEAM to model titanium by introducing a new angular function within the background electron density description. This critical insight enables the titanium MS-MEAM potential to reproduce first principles computations of reference structures and transformation paths extremely well. Importantly, it predicts lattice and elastic constants, defect energetics, and dynamics of non-ideal hcp and liquid titanium in good agreement with first principles computations and corresponding experiments, and often better than the three well-known literature models used as a benchmark. The titanium MS-MEAM has been made available in the Knowledgebase of Interatomic Models (https://openkim.org/) (Tadmor et al 2011 JOM 63 17).

Notes: Update Jan 14 2022: Citation information added and id updated from 2016--Gibson-J--Ti.

See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):
Date Created: October 5, 2010 | Last updated: June 09, 2022