× Updated! Potentials that share interactions are now listed as related models.
 
Citation: R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Notes: This is the S interaction from the "Universal" parameterization for the openKIM LennardJones612 model driver.The parameterization uses a shifted cutoff so that all interactions have a continuous energy function at the cutoff radius. This model was automatically fit using Lorentz-Berthelotmixing rules. It reproduces the dimer equilibrium separation (covalent radii) and the bond dissociation energies. It has not been fitted to other physical properties and its ability to model structures other than dimers is unknown. See the README and params files on the KIM model page for more details.

See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):
 
Citation: X.W. Zhou, D.K. Ward, J.E. Martin, F.B. van Swol, J.L. Cruz-Campa, and D. Zubia (2013), "Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te", Physical Review B, 88(8), 085309. DOI: 10.1103/physrevb.88.085309.
Abstract: Bulk and multilayered thin film crystals of II-VI semiconductor compounds are the leading materials for infrared sensing, γ-ray detection, photovoltaics, and quantum dot lighting applications. The key to achieving high performance for these applications is reducing crystallographic defects. Unfortunately, past efforts to improve these materials have been prolonged due to a lack of understanding with regards to defect formation and evolution mechanisms. To enable high-fidelity and high-efficiency atomistic simulations of defect mechanisms, this paper develops a Stillinger-Weber interatomic potential database for semiconductor compounds composed of the major II-VI elements Zn, Cd, Hg, S, Se, and Te. The potential's fidelity is achieved by optimizing all the pertinent model parameters, by imposing reasonable energy trends to correctly capture the transformation between elemental, solid solution, and compound phases, and by capturing exactly the experimental cohesive energies, lattice constants, and bulk moduli of all binary compounds. Verification tests indicate that our model correctly predicts crystalline growth of all binary compounds during molecular dynamics simulations of vapor deposition. Two stringent cases convincingly show that our potential is applicable for a variety of compound configurations involving all the six elements considered here. In the first case, we demonstrate a successful molecular dynamics simulation of crystalline growth of an alloyed (Cd0.28Zn0.68Hg0.04) (Te0.20Se0.18S0.62) compound on a ZnS substrate. In the second case, we demonstrate the predictive power of our model on defects, such as misfit dislocations, stacking faults, and subgrain nucleation, using a complex growth simulation of ZnS/CdSe/HgTe multilayers that also contain all the six elements considered here. Using CdTe as a case study, a comprehensive comparison of our potential with literature potentials is also made. Finally, we also propose unique insights for improving the Stillinger-Weber potential in future developments.

See Computed Properties
Notes: This file was sent by Dr. Xiaowang Zhou (Sandia National Laboratories) and approved for distribution on 11 Sept. 2013. This file is compatible with LAMMPS and is intended to be used for elements and compounds of the Zn-Cd-Hg-S-Se-Te system (II-VI semiconductors).
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2013--Zhou-X-W--Zn-Cd-Hg-S-Se-Te--LAMMPS--ipr1.
Link(s):
 
Citation: M.M. Islam, A. Ostadhossein, O. Borodin, A. Todd Yeates, W.W. Tipton, R.G. Hennig, N. Kumar, and A.C.T. van Duin (2015), "ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials", Physical Chemistry Chemical Physics, 17(5), 3383-3393. DOI: 10.1039/c4cp04532g.
Abstract: Sulfur is a very promising cathode material for rechargeable energy storage devices. However, sulfur cathodes undergo a noticeable volume variation upon cycling, which induces mechanical stress. In spite of intensive investigation of the electrochemical behavior of the lithiated sulfur compounds, their mechanical properties are not very well understood. In order to fill this gap, we developed a ReaxFF interatomic potential to describe Li–S interactions and performed molecular dynamics (MD) simulations to study the structural, mechanical, and kinetic behavior of the amorphous lithiated sulfur (a-LixS) compounds. We examined the effect of lithiation on material properties such as ultimate strength, yield strength, and Young's modulus. Our results suggest that with increasing lithium content, the strength of lithiated sulfur compounds improves, although this increment is not linear with lithiation. The diffusion coefficients of both lithium and sulfur were computed for the a-LixS system at various stages of Li-loading. A grand canonical Monte Carlo (GCMC) scheme was used to calculate the open circuit voltage profile during cell discharge. The Li–S binary phase diagram was constructed using genetic algorithm based tools. Overall, these simulation results provide insight into the behavior of sulfur based cathode materials that are needed for developing lithium–sulfur batteries.

See Computed Properties
Notes: This file was sent by Dr. Md Mahbubul Islam (Purdue University) on 2 August 2017 and posted with his permission.
File(s):
 
Citation: M. Wen, S.N. Shirodkar, P. Plecháč, E. Kaxiras, R.S. Elliott, and E.B. Tadmor (2017), "A force-matching Stillinger-Weber potential for MoS2: Parameterization and Fisher information theory based sensitivity analysis", Journal of Applied Physics, 122(24), 244301. DOI: 10.1063/1.5007842.
Abstract: Two-dimensional molybdenum disulfide (MoS2) is a promising material for the next generation of switchable transistors and photodetectors. In order to perform large-scale molecular simulations of the mechanical and thermal behavior of MoS2-based devices, an accurate interatomic potential is required. To this end, we have developed a Stillinger-Weber potential for monolayer MoS2. The potential parameters are optimized to reproduce the geometry (bond lengths and bond angles) of MoS2 in its equilibrium state and to match as closely as possible the forces acting on the atoms along a dynamical trajectory obtained from ab initio molecular dynamics. Verification calculations indicate that the new potential accurately predicts important material properties including the strain dependence of the cohesive energy, the elastic constants, and the linear thermal expansion coefficient. The uncertainty in the potential parameters is determined using a Fisher information theory analysis. It is found that the parameters are fully identified, and none are redundant. In addition, the Fisher information matrix provides uncertainty bounds for predictions of the potential for new properties. As an example, bounds on the average vibrational thickness of a MoS2 monolayer at finite temperature are computed and found to be consistent with the results from a molecular dynamics simulation. The new potential is available through the OpenKIM interatomic potential repository at https://openkim.org/cite/MO_201919462778_000.

See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):
Date Created: October 5, 2010 | Last updated: June 09, 2022