

OpenKIM: Tested, portable interatomic models for molecular and multiscale simulations

Daniel S. Karls, Ryan S. Elliott, and Ellad B. Tadmor

Department of Aerospace Engineering and Mechanics, University of Minnesota

OpenKIM

Open Knowledgebase of Interatomic Models (OpenKIM)

Project Objectives

- Development of an online open resource for *standardized testing* & long-term *warehousing* of interatomic models (potentials and force fields) and data
- Development of an *application programming interface (API)* standard for atomistic simulations, which will allow any interatomic model to work seamlessly with any atomistic simulation code
- Development of a quantitative *theory of transferability* of interatomic models to provide *guidance for selecting* application-appropriate models based on rigorous criteria, and *error bounds* on results

PIs: Ellad Tadmor (U. Minn), Ryan Elliott (U. Minn), James Sethna (Cornell)

Funding: NSF CDI (2009-2014); NSF CDS&E (2014-)

Recent survey (Jan 2018) on the needs of researchers engaged in molecular and multiscale simulations with interatomic models. (449 respondents, 25% response rate)

The respondents identified the following as the most pressing needs:

- Access to archived interatomic potentials that can be cited in publications (like a DOI), so that simulations can be reproduced
- Portable implementations of interatomic potentials that can be used in "plug-andplay" fashion with different molecular simulation codes
- Tools that assist researchers in selecting the most accurate interatomic potential for a specific application
- Tools that estimate the uncertainty (error bars) associated with the predictions of a given potential (for example, through sensitivity analysis)

Recent survey (Jan 2018) on the needs of researchers engaged in molecular and multiscale simulations with interatomic models. (449 respondents, 25% response rate)

The respondents identified the following as the most pressing needs:

Access to archived interatomic potentials that can be cited in publications (like a DOI), so that simulations can be reproduced

- Portable implementations of interatomic potentials that can be used in "plug-andplay" fashion with different molecular simulation codes
- Tools that assist researchers in selecting the most accurate interatomic potential for a specific application
- Tools that estimate the uncertainty (error bars) associated with the predictions of a given potential (for example, through sensitivity analysis)

Recent survey (Jan 2018) on the needs of researchers engaged in molecular and multiscale simulations with interatomic models. (449 respondents, 25% response rate)

The respondents identified the following as the most pressing needs:

Access to archived interatomic potentials that can be cited in publications (like a DOI), so that simulations can be reproduced

Portable implementations of interatomic potentials that can be used in "plug-andplay" fashion with different molecular simulation codes

- Tools that assist researchers in selecting the most accurate interatomic potential for a specific application
- Tools that estimate the uncertainty (error bars) associated with the predictions of a given potential (for example, through sensitivity analysis)

Recent survey (Jan 2018) on the needs of researchers engaged in molecular and multiscale simulations with interatomic models. (449 respondents, 25% response rate)

The respondents identified the following as the most pressing needs:

Access to archived interatomic potentials that can be cited in publications (like a DOI), so that simulations can be reproduced

Portable implementations of interatomic potentials that can be used in "plug-andplay" fashion with different molecular simulation codes

Tools that assist researchers in selecting the most accurate interatomic potential for a specific application

 Tools that estimate the uncertainty (error bars) associated with the predictions of a given potential (for example, through sensitivity analysis)

Recent survey (Jan 2018) on the needs of researchers engaged in molecular and multiscale simulations with interatomic models. (449 respondents, 25% response rate)

The respondents identified the following as the most pressing needs:

Access to archived interatomic potentials that can be cited in publications (like a DOI), so that simulations can be reproduced

Portable implementations of interatomic potentials that can be used in "plug-andplay" fashion with different molecular simulation codes

Tools that assist researchers in selecting the most accurate interatomic potential for a specific application

Tools that estimate the uncertainty (error bars) associated with the predictions of a given potential (for example, through sensitivity analysis)

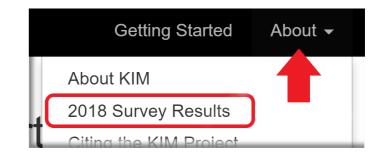
Recent survey (Jan 2018) on the needs of researchers engaged in molecular and multiscale simulations with interatomic models. (449 respondents, 25% response rate)

The respondents identified the following as the most pressing needs:

Access to archived interatomic potentials that can be cited in publications (like a DOI), so that simulations can be reproduced

Portable implementations of interatomic potentials that can be used in "plug-andplay" fashion with different molecular simulation codes

Tools that assist researchers in selecting the most accurate interatomic potential for a specific application



Tools that estimate the uncertainty (error bars) associated with the predictions of a given potential (for example, through sensitivity analysis)

or

Full survey results available at:

https://openkim.org/survey/2018-future/

KIM Philosophy on an Interatomic Model

An interatomic model (IM) can be understood to mean different things

Consider the following views of the Lennard-Jones (LJ) potential:

I. The functional form of LJ:

$$\phi(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

KIM Philosophy on an Interatomic Model

An interatomic model (IM) can be understood to mean different things

Consider the following views of the Lennard-Jones (LJ) potential:

I. The functional form of LJ:

$$\phi(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

II. The LJ parameter set for a specific material:

Argon ε = 0.0104 eV σ = 3.40 Å

(This is common in EAM potentials where the parameter file is considered to be *the* potential.)

KIM Philosophy on an Interatomic Model

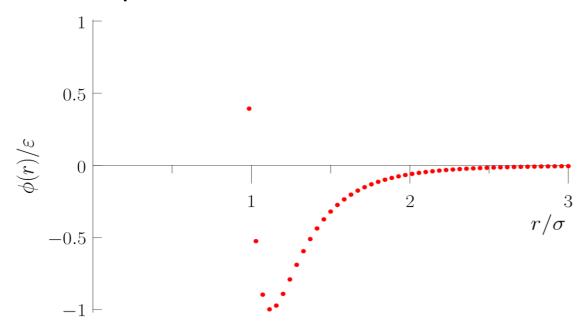
An interatomic model (IM) can be understood to mean different things

Consider the following views of the Lennard-Jones (LJ) potential:

I. The functional form of LJ:

$$\phi(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

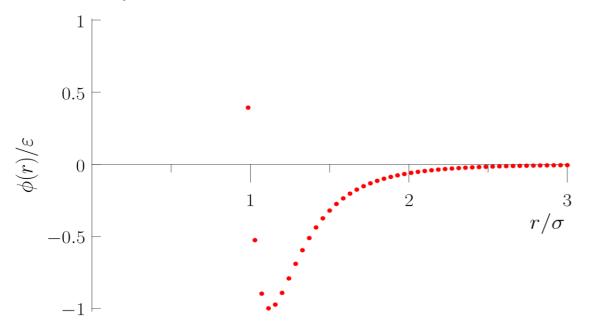
II. The LJ parameter set for a specific material:


Argon ε = 0.0104 eV σ = 3.40 Å

(This is common in EAM potentials where the parameter file is considered to be *the* potential.) III. A computer implementation of the LJ potential:

```
subroutine ljpotential(r, sig, eps, func, dfunc, d2func)
implicit none
!-- Transferred variables
double precision, intent(in) :: r, sig, eps
double precision, intent(out) :: func, dfunc, d2func
!-- Local variables
double precision rm, rm2, rm6, eos24
      = siq/r
                       ! siq/r
rm
      = rm*rm ! (sig/r)^2
rm2
rm6 = rm2*rm2*rm2 ! (siq/r)^{6}
eos24 = 24.0 * eps/sig
func
       = 4.0 \text{*eps*rm6*}(\text{rm6-1.0})
dfunc = eos24 * rm * rm6 * (-2.0 * rm6 + 1.0)
d2func = (eos24/sig) *rm2*rm6*(26.0*rm6-7.0)
end subroutine ljpotential
```

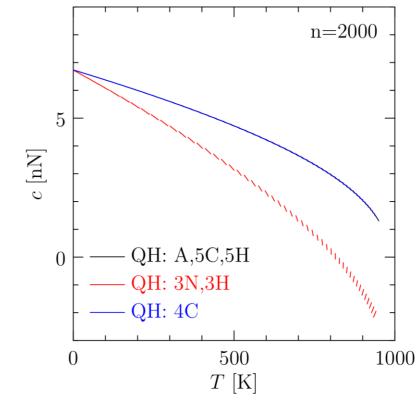
Is a parameter set enough?


Interatomic models are often stored as a table of discrete data points that are interpolated:

r 1	$\phi(\mathbf{r}_1)$
\mathbf{r}_2	$\phi(\mathbf{r}_2)$
r3	$\phi(\mathbf{r}_3)$

Is a parameter set enough?

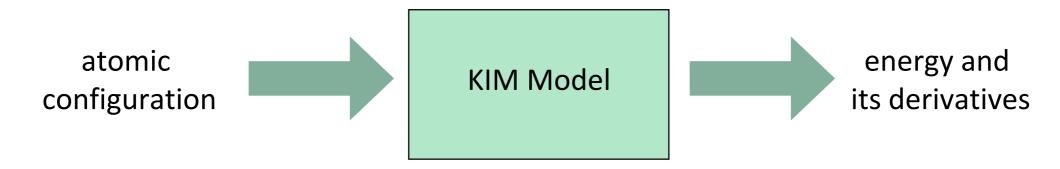
Interatomic models are often stored as a table of discrete data points that are interpolated:



r 1	$\phi(\mathbf{r}_1)$
r ₂	$\phi(\mathbf{r}_2)$
r3	$\phi(\mathbf{r}_3)$
	•••

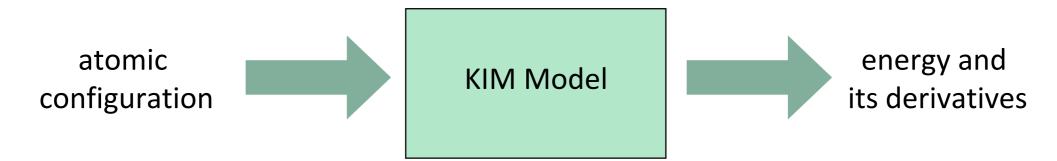
The interpolation choice (e.g. spline order) affects some results,

e.g. Quasi-harmonic estimate of the elastic constant for a 1D chain of atoms interacting via a nearest-neighbor Morse pair potential:


$$c = a \left[\phi''(a) + \frac{k_B T}{2} \frac{\phi^{(4)}(a) \phi''(a) - (\phi''(a))^2}{(\phi''(a))^2} \right]$$

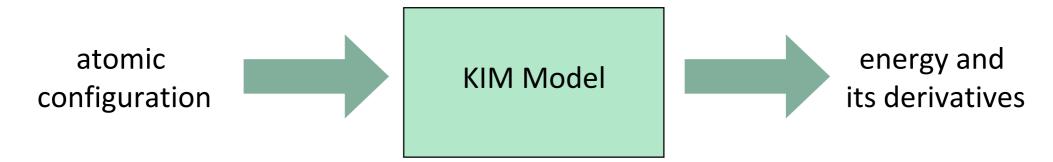
Wen et al., MSMSE, 23:074008 (2015)

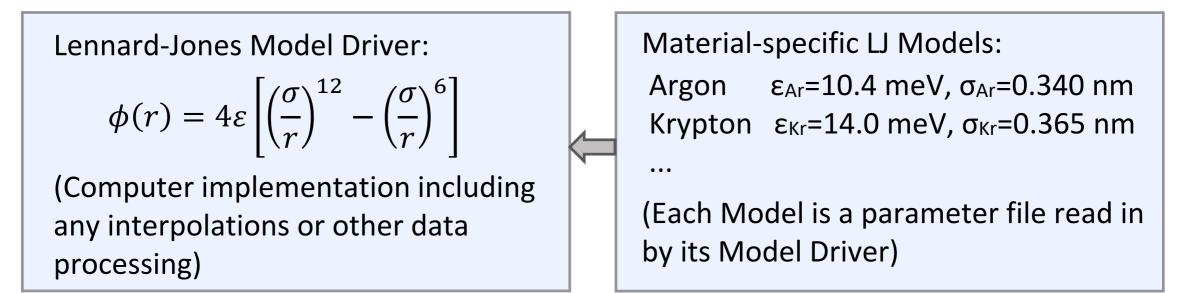
KIM Models


- The KIM framework defines an interatomic model as follows:
 - A KIM Model is an <u>autonomous</u> computational entity

• KIM Models can have two forms

KIM Models

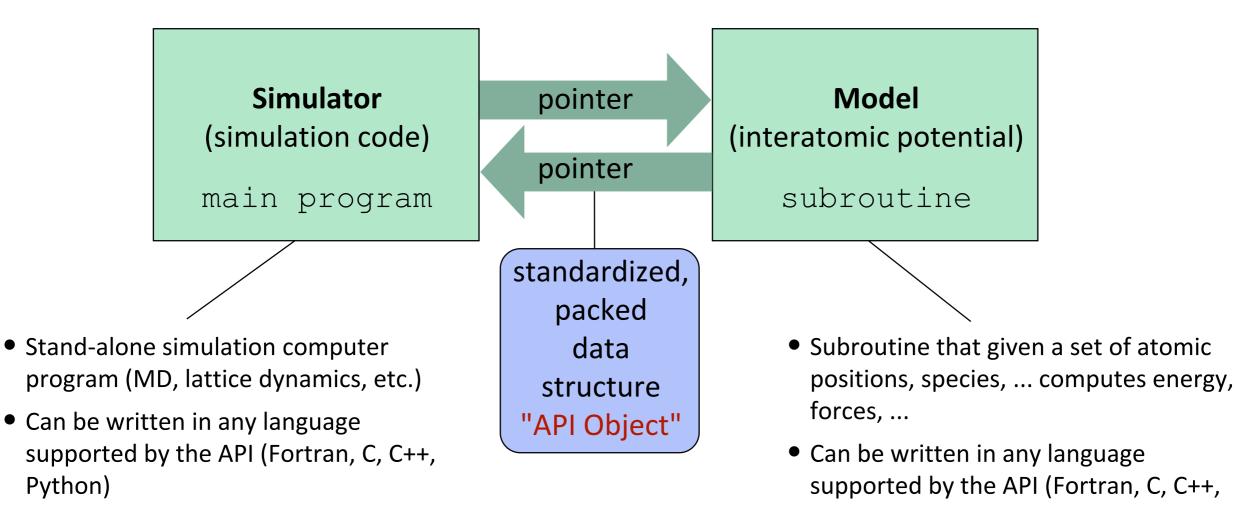

- The KIM framework defines an interatomic model as follows:
 - A KIM Model is an <u>autonomous</u> computational entity


- KIM Models can have two forms
 - **1.Stand-alone Model** functional form implementation and parameters for <u>one</u> material

KIM Models

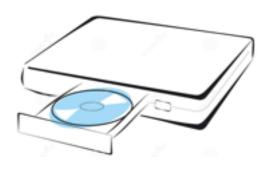
- The KIM framework defines an interatomic model as follows:
 - A KIM Model is an <u>autonomous</u> computational entity

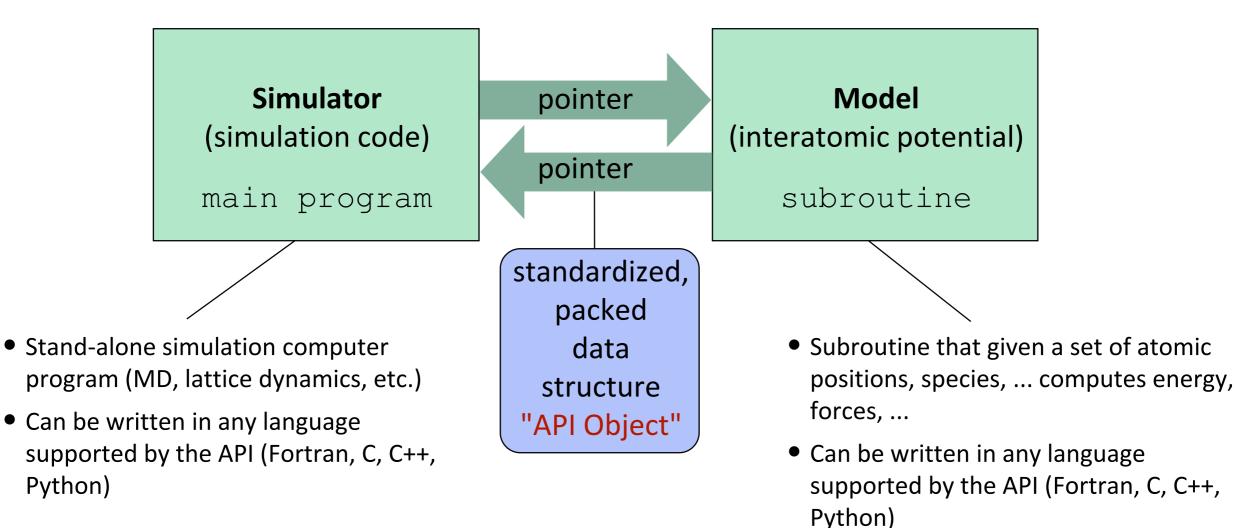
- KIM Models can have two forms
 - 1. Stand-alone Model functional form implementation and parameters for one material
 - 2. Parameterized Model parameter set that is read in by a Model Driver, e.g.:



Portability and the KIM API Standard

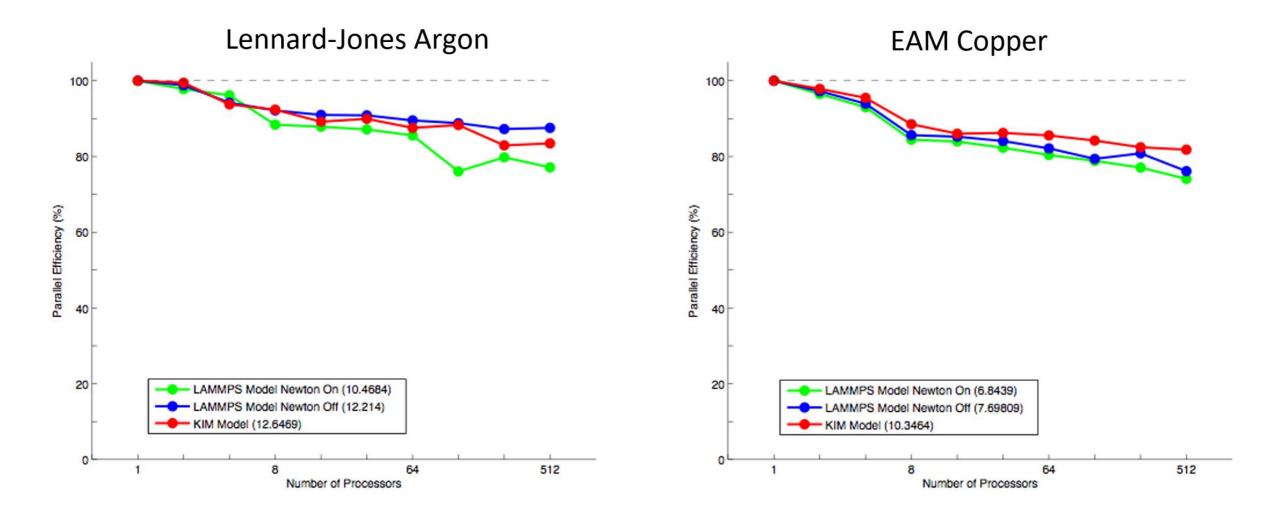
In order to maximize the portability of KIM Models, an Application Programming Interface (API) standard has been defined for exchanging information between simulators and models




Python)

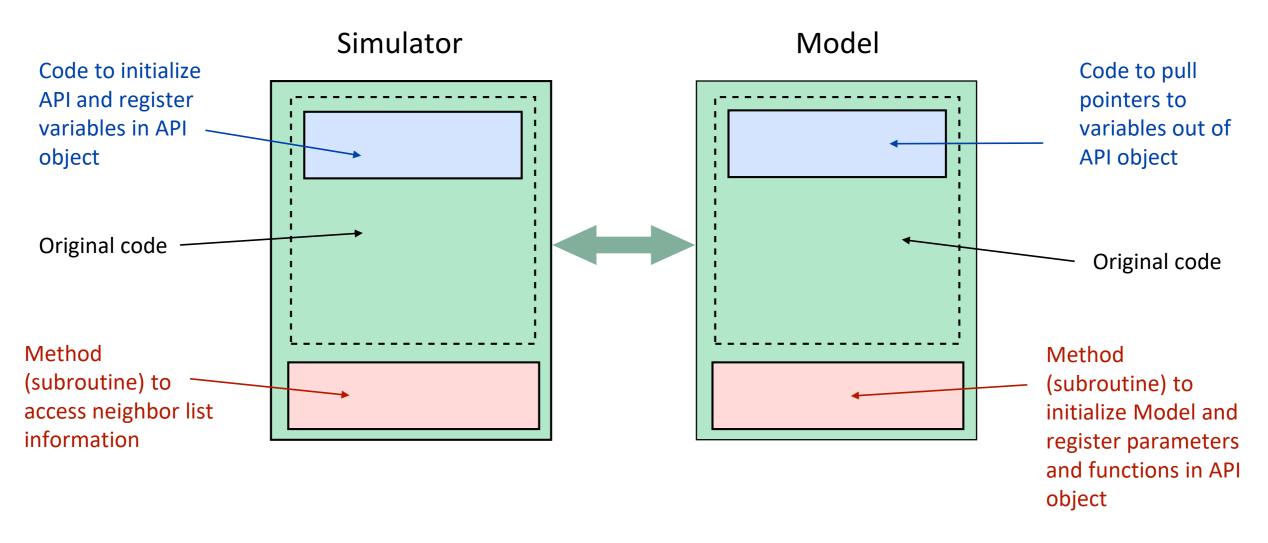
Portability and the KIM API Standard

In order to maximize the portability of KIM Models, an Application Programming Interface (API) standard has been defined for exchanging information between simulators and models



Currently working on support for electrostatics and charge equilibration

Efficiency of the KIM API


The KIM API is a lightweight, efficient interface

LAMMPS benchmark results (scaled size with 32,000 atoms per core)

Using the KIM API

Changes to existing codes to make them KIM-compliant are relatively minor:

- By supporting the KIM API:
 - A developer can make their Model available to all KIM-compliant simulation codes
 - A simulator has instant access to all Models in the KIM Repository

KIM-Compliant Codes

libAtoms + QUIP

Example: Using KIM Models with LAMMPS

Every KIM Model is uniquely identified by a KIM ID:

EAM_Dynamo_ErcolessiAdams_Al__MO_123629422045_004

human-readable prefix

ID for citation (12 digit + 3 digit version)

- Using KIM Models with LAMMPS is straightforward:
 - Install the KIM API, build LAMMPS with `make yes-kim`
 - Install the KIM Models that you want to use with the collections management utility (included with the API) or download source from openkim.org
 - Use 'pair_style kim' and the KIM ID

6	pair_style pair_coeff	eam/alloy * * Al_ercolessiAdams.alloy Al
	pair_style pair_coeff mass	kim KIMvirial EAM_Dynamo_ErcolessiAdams_AlMO_123629422045_004 * * Al 1 26.98

Citing KIM Models

Example of citing a KIM Model:

... the potential employed was Johnson's nearest neighbor EAM potential [1] archived in OpenKIM [2–3].

References

- R. A. Johnson, "Analytic nearest-neighbor model for fcc metals", *Phys. Rev. B*, 37, 3924–3931, 1988.
- 2. R. S. Elliott, "Analytical NN EAM model for Cu by Johnson", https://openkim.org/cite/MO_887933271505_001.
- E. B. Tadmor, R. S. Elliott, J. P. Sethna, R. E. Miller and C. A. Becker, "The potential of automatic simulations and the Knowledgeable of Interatomic Models", JOM, 63, 17, 2011.

The ability to cite a KIM ID and have access to the archived Model makes it possible to reproduce atomistic simulations.

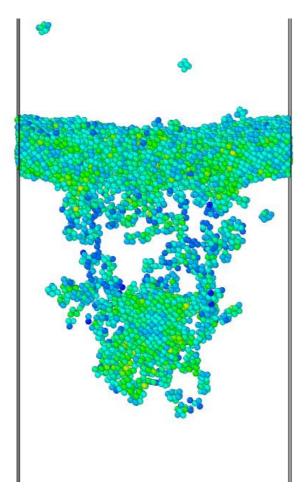
Model Verification Checks

- All KIM Models are subjected to <u>Verification Checks</u> when uploaded to openkim.org Mandatory (Pass/Fail)
 - Species supported as stated
 - Unit conversion handled correctly
 - Domain decomposition handled correctly
 - ...

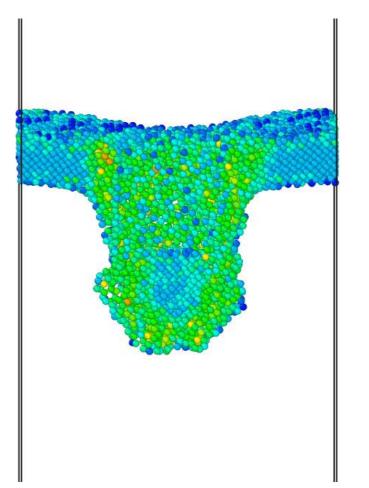
Consistency (A,B,C,D,F)

- Numerical derivative check of forces, virial, hessian, ...
- Translational and rotational invariance
- ...

Informational (Pass/Fail or A,B,C,D,F)


- Smooth energy, forces, etc. at cutoff
- Inversion symmetry
- Coding issues: Dependence on optimization, memory leaks, etc.

A simulation is only as good as the potential


The predictive capability of an atomistic simulation is dependent on the fidelity of the interatomic model

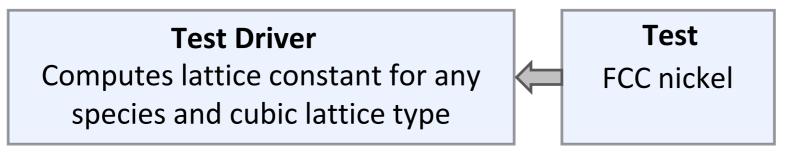
Example: Projectile impacting silicon plate

Tersoff Potential exhibits brittle behavior

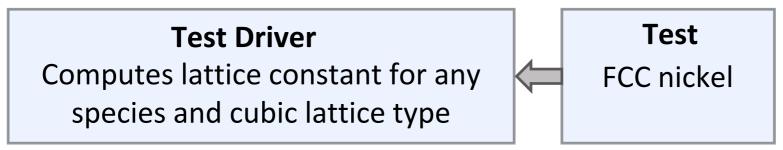
Stillinger-Weber Potential exhibits ductile behavior

Interatomic Potentials for Silicon

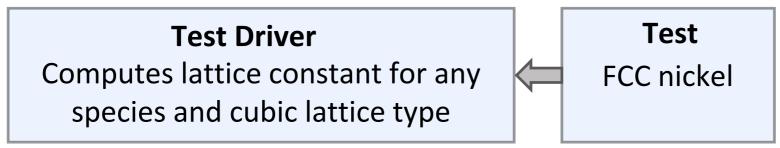
- 1. Keating (Valence), Phys. Rev., 145, 637 (1966).
- 2. Altmann,...,Tomassini (Valence), J. Phys. C, 15, 5581 (1982).
- 3. Pearson, Takai, Halicioglu, Tiller (PTHT), J. Cryst. Growth, 70, 33 (1984).
- 4. Stillinger-Weber (SW), PRB, **31**, 5262 (1985).
- 5. Tersoff (T1), PRL, 56, 632 (1986).
- 6. Brenner, Garrison, PRB, **34**, 1304 (1986).
- 7. Dodson (DOD), PRB, 35, 2795 (1987).
- 8. Biswas, Hamann (BH), PRB, **36**, 6434 (1987).
- 9. Baskes (EAM-Si), PRL, 2666 (1987).
- 10. Tersoff (T2), PRB, **37**, 6991 (1988).
- 11. Tersoff (T3), PRB, 38, 9902 (1988).
- 12. Khor, Das Sarma, PRB, 38, 3318 (1988).
- 13. Kaxiras, Pandey, PRB, **38**, 12736 (1988).
- 14. Baskes, Nelson, Wright (MEAM-Si), PRB, 40, 6085 (1989).
- **15**. Ackland, *PRB*, **40**, 10351 (1989).
- 16. Chelokowsky, Phillips, Kamal, Strauss, PRL, 62, 292 (1989).
- 17. Mistriotis, Flytzanis, Farantos (4-body), PRB, **39**, 1212 (1989).
- 18. Erkoç, Phys. Stat. Sol. (b), 152, 447 (1989).
- 19. Bolding, Anderson, PRB, 41, 10568 (1990).
- 20. Carlsson, Fedders, Myles, PRB, 41, 1247 (1990).
- 21. Murrell, Mottram, Mol. Phys., 69, 571 (1990).
- 22. Wang, Rockett, PRB, 43, 12571 (1991).
- 23. Chelikowsky, Glassford, Phillips, PRB, 44, 1538 (1991).
- 24. Li, Johnson, Murrell, Chem. Soc. Faraday Trans., 88, 1229 (1992).
- 25. Gong, PRB, 47, 2329 (1993).
- 26. Liu, Thermocem. J. Molec. Struct., 341, 253 (1995).
- 27. Omote, Waseda (Pair Potential), Jap. J. Appl. Phys. 1, 35, 151 (1996).
- 28. Stephenson, Radny, Smith (modifed SW), Surf. Sci., 366, 177 (1996).
- 29. Bazant, Kaxiras, Justo (EDIP), PRB, 56, 8542 (1997).
- 30. Cai, Phys. Stat. Sol. B, 212, 9 (1999).
- 31. Lenosky,...,Kress (MEAM), Mod. Sim. Mater. Sci. Eng., 8, 825 (2000).
- 32. van Duin,...,Goddard (ReaxFF), J. Phys. Chem. A 107, 3803 (2003).
- 33. Erhart, Albe (Bond Order), PRB, 71, 035211 (2005).
- 34. Kumagai, Izumi, Hara, Sakai, Comp. Mat. Sci, **39**, 457 (2007).
- **35**. Lee, Calphad-Comp. Coupling Phase Diag. Thermochem., **31**, 95 (2007).
- 36. Yu, Sinnott, Phillpot, PRB, 75, 085311 (2007).
- 37. Timonova, Lee, Thijsse (MEAM), Nuc. Inst. Meth. Phys. Res. B, 255, 195 (2007).
- 38. Gillespie,...,Pettifor (Bond Order), PRB, 75, 155207 (2007).


- 39. Behler and Parrinello (NN), Phys. Rev. Lett. 98, 146401 (2007).
- 40. Vashishta et al. (3-body), J. Appl. Phys. 101, 103515 (2007).
- 41. Sanville (NN), J. Phys. Cond. Matt. 20, 285219 (2008).
- 42. Schelling (Bond order), Comp. Mat. Sci. 44, 274-279 (2008)
- 43. Malshe et al. (NN), J. Chem. Phys. 129, 044111 (2008).
- 44. Ohta et al. (SW), Jap. J. Appl. Phys. 48, 020225 (2009).
- 45. Hossain et al. (DFT-ArSi), Nucl. Inst. & Meth. Phys. Res. B 267, 1061 (2009).
- 46. Lucas et al. (EDIP), J. Phys. Cond. Matt. 22, 035802 (2010).
- 47. Ryu and Cai (MEAM), J. Phys. Cond. Matt. 22, 055401 (2010).
- 48. Timonova and Thijsse (MEAM), Comp. Mat.. Sci. 48, 609-620 (2010).
- 49. Grochia et al. (MEAM), Chem. Phys. Lett. 493, 57-60 (2010).
- 50. Du et al. (MEAM), Phys. Stat. Solidi B 248, 2050-2055 (2011).
- 51. Tewary (Phenomenological), Phys. Lett. A 375, 3811-3816 (2011).
- 52. Lee and Hwang (FM-SW), Phys. Rev. B 85, 125204 (2012).
- 53. Dongare et al. (A-EAM), MSMSE 20, 035007 (2012).
- 54. Cui et al. (MEAM), J. Power Sources 207, 150-159 (2012).
- 55. da Cruz et al. (MEAM), J. Heat Trans. 134, 062402 (2012).
- 56. Brisquet et al., (reactive) J. Phys.: Condens. Matter. 24, 395004 (2012).

The Scream, Edvard Munch


Test: A computer program that when coupled with a suitable Model generates one or more Predictions, each of which is associated with a specific KIM Property

Test: A computer program that when coupled with a suitable Model generates one or more Predictions, each of which is associated with a specific KIM Property


Test: A computer program that when coupled with a suitable Model generates one or more Predictions, each of which is associated with a specific KIM Property

• Usually a parameter set that is read in by a *Test Driver*, e.g.:

• Can be a program or an input file to a supported Simulator (e.g. ASE, LAMMPS, ...)

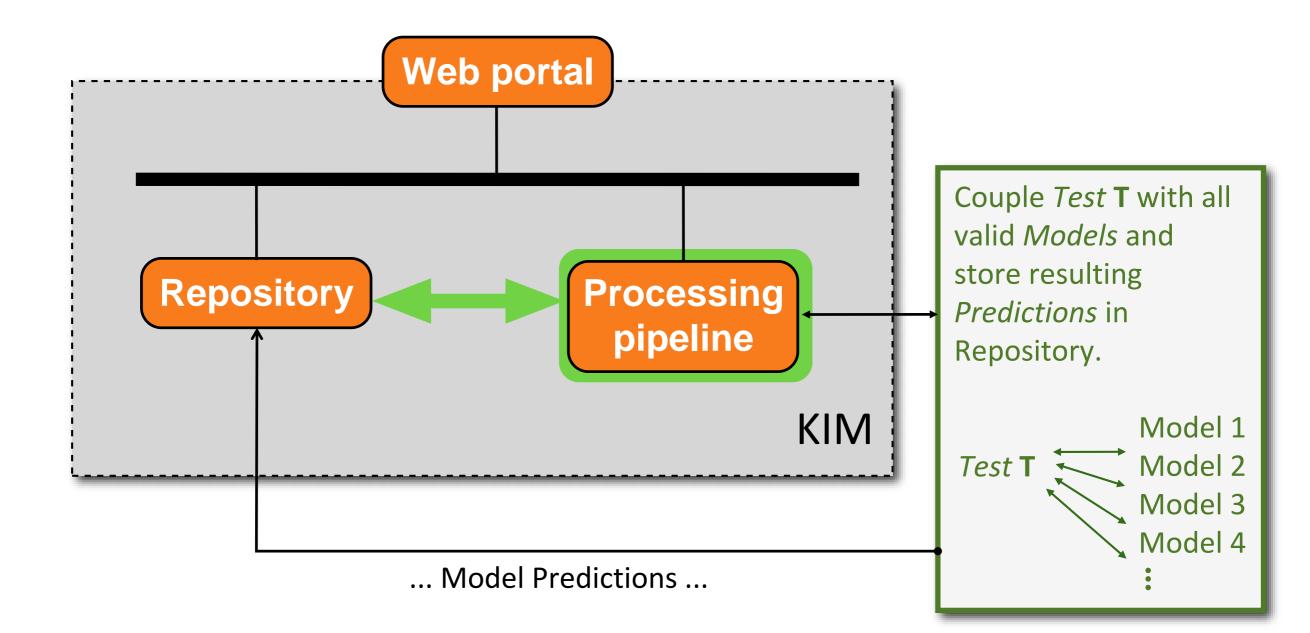
Test: A computer program that when coupled with a suitable Model generates one or more Predictions, each of which is associated with a specific KIM Property

- Can be a program or an input file to a supported Simulator (e.g. ASE, LAMMPS, ...)
- What constitutes a KIM Property?

Test: A computer program that when coupled with a suitable Model generates one or more Predictions, each of which is associated with a specific KIM Property

- Can be a program or an input file to a supported Simulator (e.g. ASE, LAMMPS, ...)
- What constitutes a KIM Property?
 - An "ideal" physical property without reference to the algorithmic details of how it is computed (e.g. "melting temperature" as opposed to a specific approach for getting it)

Test: A computer program that when coupled with a suitable Model generates one or more Predictions, each of which is associated with a specific KIM Property

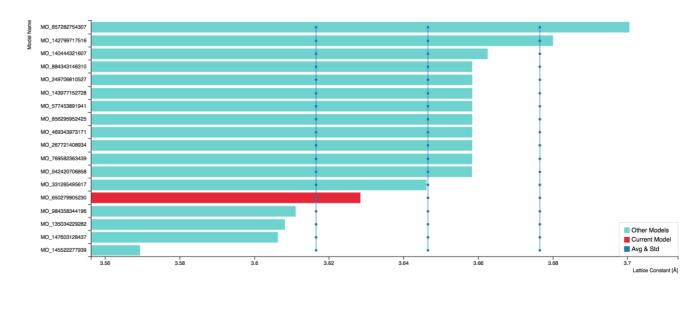


- Can be a program or an input file to a supported Simulator (e.g. ASE, LAMMPS, ...)
- What constitutes a KIM Property?
 - An "ideal" physical property without reference to the algorithmic details of how it is computed (e.g. "melting temperature" as opposed to a specific approach for getting it)
 - A "canonical property," i.e. a basic atomistic property to which Models are often fitted and from which larger-scale behavior might be inferred

Bulk - lattice constants	 surface structure gamma surface 	 Point
- cohesive energy	 grain boundary structure 	 vacancy formation energy
- elastic constants		- vacancy migration barrier
- phonon spectrum	Line	
	 dislocation core structure 	
Wall	 dislocation core energy 	
 surface energy 	- Peierls barrier	

Interacting with KIM

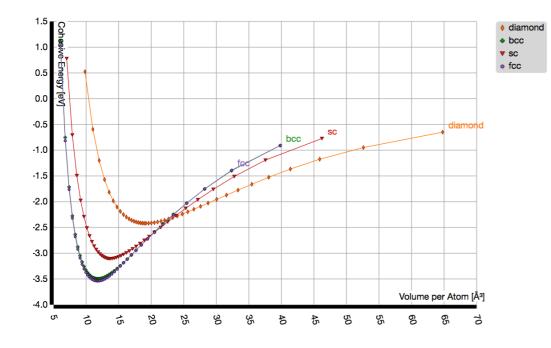
Uploading new KIM Test to the OpenKIM Repository



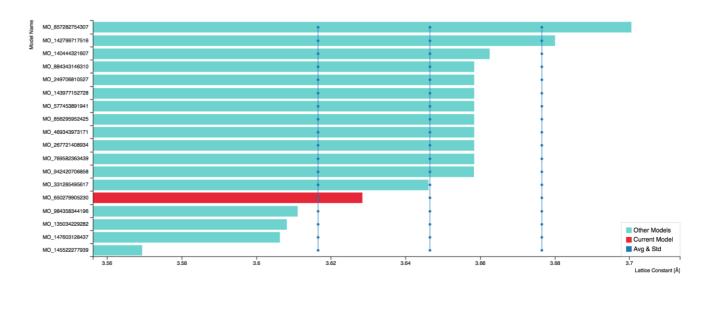
KIM Visualization

KIM Visualizers are designed to display/analyze Test results and are displayed on Model pages

Cohesive energy curve


FCC Lattice Constant

KIM Visualizers work by


- Querying openkim.org to obtain desired Test results (see https://query.openkim.org/)
- Plotting the results using Javascript libraries (C3, D3) and templates developed in KIM

KIM Visualization

KIM Visualizers are designed to display/analyze Test results and are displayed on Model pages

Cohesive energy curve

FCC Lattice Constant

KIM Visualizers work by

- Querying openkim.org to obtain desired Test results (see https://query.openkim.org/)
- Plotting the results using Javascript libraries (C3, D3) and templates developed in KIM
- Submit your own (tutorials available)

KIM Models (https://openkim.org)

OpenKIM

Getting Started About - Developers - Repository - Support - Member Login

"All models are wrong but some are useful." — George E. P. Box

Welcome to the Knowledgebase of Interatomic Models!

OpenKIM is an online framework for making molecular simulations reliable, reproducible, and portable. Computer implementations of interatomic models are archived in OpenKIM, verified for coding integrity, and tested by computing their predictions for a variety of material properties. Models conforming to the KIM *application programming interface* (API) work seamlessly with major simulation codes that have adopted the KIM API standard.

Q Explore	🗞 Use	Contribute
 Explore the predictions of interatomic models for different material properties. <u>Getting Started</u> <u>Search by Material</u> <u>Search by Property</u> <u>Developer Directory</u> 	Use a KIM interatomic model with a simulation code. • <u>Install the KIM API</u> • <u>Find a Model</u> • <u>Supported Codes</u>	 Contribute content to the OpenKIM project. <u>Become a Member</u> <u>Contribute Models, Tests, Data</u> <u>Contact Us</u>

r News	Metrics	
07-Jul-2018 kim-api-v2.0.0-beta.1 and kim-api-v1.9.7 released	Model Drivers	23

OpenKIM

Getting Started About - Developers - Repository - Support - Member Login

"All models are wrong but some are useful." — George E. P. Box

Welcome to the Knowledgebase of Interatomic Models!

OpenKIM is an online framework for making molecular simulations reliable, reproducible, and portable. Computer implementations of interatomic models are archived in OpenKIM, verified for coding integrity, and tested by computing their predictions for a variety of material properties. Models conforming to the KIM *application programming interface* (API) work seamlessly with major simulation codes that have adopted the KIM API standard.

Q Explore	🗞 Use	Contribute
 Explore the predictions of interatomic models for different material properties. Getting Started Search by Material Search by Property Developer Directory 	Use a KIM interatomic model with a simulation code. • <u>Install the KIM API</u> • <u>Find a Model</u> • <u>Supported Codes</u>	Contribute content to the OpenKIM project. <u>Become a Member</u> <u>Contribute Models, Tests, Data</u> <u>Contact Us</u>

r News	Metrics	
07-Jul-2018 kim-api-v2.0.0-beta.1 and kim-api-v1.9.7 released	Model Drivers	23

Getting Started About - Developers - Repository - Support - Member Login

KIM Models

Click on an element in the periodic table for which you need an interatomic model.

KIM Models (interatomic potentials and force fields) are software packages for describing atomic interactions that can be used with a variety of simulation codes, including LAMMPS, DL_POLY, IMD, ASE and GULP, that are compatible with the KIM API standard.

н																	Не
Li	Ве											В	С	N	0	F	Ne
Na	Mg		T 0 N	lodels					30 M	T odels		AI	Si	Р	S	CI	Ar
к	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
Cs	Ва		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Po	At	Rn
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Click here for index of Models

Getting Started About - Developers - Repository - Support - Member Login

KIM Models

Click on an element in the periodic table for which you need an interatomic model.

KIM Models (interatomic potentials and force fields) are software packages for describing atomic interactions that can be used with a variety of simulation codes, including LAMMPS, DL_POLY, IMD, ASE and GULP, that are compatible with the KIM API standard.

н																	Не
Li	Ве											В	С	N	0	F	Ne
Na	Mg		T 0 N	lodels					30 M	f odels		AI	Si	Р	S	CI	Ar
к	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
Cs	Ва		Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ті	Pb	Bi	Po	At	Rn
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Click here for index of Models

Extended KIM ID	Title
EAM_Dynamo_Ackland_Tichy_CuMO_179025990738_004	Finnis-Sinclair potential for Cu developed by Ackland et al. (1987)
EAM_Dynamo_Bonny_Pasianot_FeCuNiMO_469343973171_004	FeCuNi potential to model reactor pressure vessel steels
EAM_Dynamo_Cai_Ye_AlCuMO_942551040047_004	EAM potential for Al-Cu binary system
EAM_Dynamo_Foiles_Baskes_Universal3_CuMO_666348409573_003	Third universal Cu potential of Foiles, Baskes, and Daw; obtained from LAMMPS
EAM_Dynamo_Hoyt_Garvin_PbCuMO_119135752160_004	Embedded Atom Method parametrization of the Pb-Cu system
EAM_Dynamo_Mendelev_King_CuMO_748636486270_004	FS potential for Cu
EAM_Dynamo_Mendelev_Kramer_CuMO_945691923444_004	FS/EAM potential for Cu
EAM_Dynamo_Mendelev_Kramer_CuZrMO_600021860456_004	FS potential for Cu-Zr
EAM_Dynamo_Mendelev_Sordelet_CuZrMO_120596890176_004	FS potential for Cu-Zr
EAM_Dynamo_Mishin_Mehl_CuMO_346334655118_004	EAM Cu Potential
EAM_Dynamo_Onat_Durukanoglu_CuNiMO_592013496703_004	An optimized EAM potential for Cu-Ni alloys
EAM_Dynamo_Williams_Mishin_CuAgMO_128703483589_004	EAM alloy potential for the Cu-Ag system.
EAM_Dynamo_Wu_Trinkle_CuAgMO_270337113239_004	EAM potential for Cu/Ag(111) Surface Diffusion.
EAM_Dynamo_Zhou_Johnson_CuMO_127245782811_004	EAM alloy potential set table, compatible with LAMMPS
EAM_Johnson_NearestNeighbor_CuMO_887933271505_001	This is an analytical NN EAM model for Cu by Johnson.
EMT_Asap_MetalGlass_CuMgZrMO_655725647552_002	Effective Medium Theory potential for CuMg and CuZr alloys, in particular metallic glasses.
EMT_Asap_Standard_Jacobsen_Stoltze_Norskov_AlAgAuCuNiPdPtMO_118428466217_002	Standard Effective Medium Theory potential for face-centered cubic metals as implemented in ASE/Asap.
LennardJones612_UniversalShiftedMO_959249795837_002	Efficient "universal" shifted Lennard-Jones model for all KIM API supported species
MEAN 2010 Eq. to Ga. MO 1/15522277939 001	Model parameterization of 2NN MEAM model

Extended KIM ID	Title
EAM_Dynamo_Ackland_Tichy_CuMO_179025990738_004	Finnis-Sinclair potential for Cu developed by Ackland et al. (1987)
EAM_Dynamo_Bonny_Pasianot_FeCuNiMO_469343973171_004	FeCuNi potential to model reactor pressure vessel steels
EAM_Dynamo_Cai_Ye_AlCuMO_942551040047_004	EAM potential for Al-Cu binary system
EAM_Dynamo_Foiles_Baskes_Universal3_CuMO_666348409573_003	Third universal Cu potential of Foiles, Baskes, and Daw; obtained from LAMMPS
EAM_Dynamo_Hoyt_Garvin_PbCuMO_119135752160_004	Embedded Atom Method parametrization of the Pb-Cu system
EAM_Dynamo_Mendelev_King_CuMO_748636486270_004	FS potential for Cu
EAM_Dynamo_Mendelev_Kramer_CuMO_945691923444_004	FS/EAM potential for Cu
EAM_Dynamo_Mendelev_Kramer_CuZrMO_600021860456_004	FS potential for Cu-Zr
EAM_Dynamo_Mendelev_Sordelet_CuZrMO_120596890176_004	FS potential for Cu-Zr
EAM_Dynamo_Mishin_Mehl_CuMO_346334655118_004	EAM Cu Potential
EAM_Dynamo_Onat_Durukanoglu_CuNiMO_592013496703_004	An optimized EAM potential for Cu-Ni alloys
EAM_Dynamo_Williams_Mishin_CuAgMO_128703483589_004	EAM alloy potential for the Cu-Ag system.
EAM_Dynamo_Wu_Trinkle_CuAgMO_270337113239_004	EAM potential for Cu/Ag(111) Surface Diffusion.
EAM_Dynamo_Zhou_Johnson_CuMO_127245782811_004	EAM alloy potential set table, compatible with LAMMPS
EAM_Johnson_NearestNeighbor_CuMO_887933271505_001	This is an analytical NN EAM model for Cu by Johnson.
EMT_Asap_MetalGlass_CuMgZrMO_655725647552_002	Effective Medium Theory potential for CuMg and CuZr alloys, in particular metallic glasses.
EMT_Asap_Standard_Jacobsen_Stoltze_Norskov_AlAgAuCuNiPdPtMO_118428466217_002	Standard Effective Medium Theory potential for face-centered cubic metals as implemented in ASE/Asap.
LennardJones612_UniversalShiftedMO_959249795837_002	Efficient "universal" shifted Lennard-Jones model for all KIM API supported species
MEAM 2NN Eq to Ga MO 1/15522277939 001	Model parameterization of 2NN MEAM model

KIM Items /	Models / EAM_Johnson_Nearest	tNeighbor_CuMO_887933271505_001 Jump to: Tests Visualizers Files Wiki
	EAM_Johnson_Neare	estNeighbor_CuMO_887933271505_001
	Title 🕑	This is an analytical NN EAM model for Cu by Johnson.
	Description 😧	This is an analytical NN EAM model for Cu by Johnson.
	Species 🚱	Cu
	Disclaimer 🚱	None
	Contributor	Ryan
	Maintainer	Ryan
	Author	Ryan S. Elliott
	Publication Year	2014
	Source Citations 😧	Johnson RA (1988) Analytic nearest-neighbor model for fcc metals. <i>Physical Review B</i> 37(8):3924–3931. doi:10.1103/PhysRevB.37.3924
	Item Citation	Click here to download a citation in BibTeX format.
	Short KIM ID 😧	MO_887933271505_001
	Extended KIM ID	EAM_Johnson_NearestNeighbor_CuMO_887933271505_001
	Citable Link	https://openkim.org/cite/MO_887933271505_001
	KIM Item Type 🚱	Stand-alone Model
	Programming Language(s) 😧	100.00% C

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001

^o Verification Check Dashboard

Grade	Name	Category	Brief Description	Full Results	Aux File(s)
Pø	vc-species- supported-as- stated	mandatory	The model supports all species it claims to support; see full description.	Results	Files
Pø	vc-periodicity- support	mandatory	Periodic boundary conditions are handled correctly; see full description.	Results	Files
Pø	vc-permutation- symmetry	mandatory	Total energy and forces are unchanged when swapping atoms of the same species; see full description.	Results	Files
Aø	vc-forces- numerical- derivative	consistency	Forces computed by the model agree with numerical derivatives of the energy; see full description.	Results	Files
Fø	vc-dimer- continuity-c1	informational	The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.	Results	Files
Pø	vc-objectivity	informational	Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.	Results	Files
Pø	vc-inversion- symmetry	informational	Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.	Results	Files
Pø	vc-memory-leak	informational	The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.	Results	Files
Pø	vc-thread-safe	mandatory	The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.	Results	Files

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001

^o Verification Check Dashboard

Grade	Name	Category	Brief Description	Full Results	Aux File(s)
Pø	vc-species-	mandatory	The model supports all species it claims to support; see full description.	Results	Files
	supported-as- stated	Num	erical differentiation check of forces using Richards	son e	xtra
Pø	vc-periodicity- support	mandatory	Penodic boundary conditions are nandled correctly, see full description.	Results	Files
Pø	vc-permutation- symmetry	mandatory	Total energy and forces are unchanged when swapping atoms of the same species; see full description.	Results	Files
Aø	vc-forces- numerical- derivative	consistency	Forces computed by the model agree with numerical derivatives of the energy; see full description.	Results	Files
Fø	vc-dimer- continuity-c1	informational	The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.	Results	Files
Pø	vc-objectivity	informational	Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.	Results	Files
Pø	vc-inversion- symmetry	informational	Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.	Results	Files
Pø	vc-memory-leak	informational	The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.	Results	Files
Pø	vc-thread-safe	mandatory	The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.	Results	Files

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001

^o Verification Check Dashboard

Grade	Name	Category	Brief Description	Full Results	Aux File(s)
Pø	vc-species- supported-as- stated	mandatory	The model supports all species it claims to support; see full description.	Results	Files
Pø	vc-periodicity- support	mandatory	Periodic boundary conditions are handled correctly; see full description.	Results	Files
Pø	vc-permutation- symmetry	mandatory	Total energy and forces are unchanged when swapping atoms of the same species; see full description.	Results	Files
Aø	vc-forces- numerical- derivative	consistency	Forces computed by the model agree with numerical derivatives of the energy; see full description.	Results	Files
Fø	vc-dimer- continuity-c1	informational	The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.	Results	Files
Pø	vc-objectivity	informational	Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full	Results	Files
Pø	vc-inversion- symmetry	informationa	Memory leak check using the valgrind memory deb	uggi	ng to
Pø	vc-memory-leak	informational	The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.	Results	Files
Pø	vc-thread-safe	mandatory	The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.	Results	Files

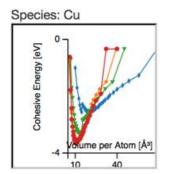
- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001

^o Verification Check Dashboard

Grade	Name	Category	Brief Description	Full Results	Aux File(s)
Pø	vc-species- supported-as- stated	pported-as-		Results	Files
Pø	vc-periodicity- support	mandatory	Periodic boundary conditions are handled correctly; see full description.	Results	Files
Pø	vc-permutation- symmetry	mandatory	Total energy and forces are unchanged when swapping atoms of the same species; see full description.	Results	Files
Aø	vc-forces- numerical- derivative	consistency	Forces computed by the model agree with numerical derivatives of the energy; see full description.	Results	Files
Fø	vc-dimer- continuity-c1	informational	The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.	Results	Files
^{>} 0	vc-objectivity	informational	Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.	Results	Files
Pø	vc-inversion- symmetry	informational	Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.	Results	Files
Pø	vc-memory-leak	informational	The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.	Results	Files
Pø	vc-thread-safe 🗲	mandatory	Python-based verification releasing the Global Inte	rpret	ter L
			to test thread parallelism.		

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001

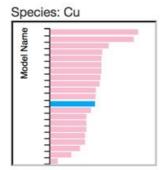
^o Verification Check Dashboard


Grade	Name	Category	Brief Description	Full Results	Aux File(s)
Pø	vc-species- mandatory supported-as- stated		The model supports all species it claims to support; see full description.		Files
Pø	vc-periodicity- support	mandatory	Periodic boundary conditions are handled correctly; see full description.	Results	Files
Pø	vc-permutation- symmetry	mandatory	Total energy and forces are unchanged when swapping atoms of the same species; see full description.	Results	Files
Aø	vc-forces- numerical- derivative		utoff smoothness and discontinuity detection	Results	Files
Fø	vc-dimer-	Informat US	are continuous); see full description.	Results	Files
Pø	vc-objectivity	informational	Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.	Results	Files
Pø	vc-inversion- symmetry	informational	Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.	Results	Files
Pø	vc-memory-leak informational The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.		Results	Files	
	vc-thread-safe	mandatory	The model returns the same energy and forces when computed in serial and when using parallel threads for a	Results	Files

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001
- V

^o Visualizers (in-page)

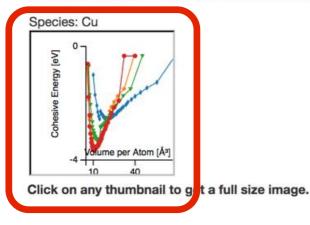
Cohesive Energy Graph


This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Click on any thumbnail to get a full size image.

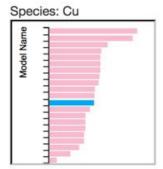
Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.


Click on any thumbnail to get a full size image.

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001
- V

^o Visualizers (in-page)


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Click on any thumbnail to get a full size image.

OpenKIM

Model: EAM_Johnson_NearestNeighbor_Cu__MO_887933271505_001 Species: Cu

This graph shows the cohesive energy versus volume-per-atom for the current model for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) The curves below are for the species specified above.

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001
- ¥

Cubic Crystal Basic Properties Table

Species: Cu

	Model	Lattice Constant [Â] ⊘	Cohesive Energy [eV]�	c11 [GPa] Ø	c12 [GPa] Ø	c44 [GPa]
<u>bcc</u> <u>∡*Expand</u>	EAM_Johnson_Ne arestNeighbor_Cu MO_887933271 505_001	2.85939610004	3.6063831577047 547	146.26087765300 002	137.95217564700 002	91.9367752334
diamond ✓ Expand	EAM_Johnson_Ne arestNeighbor_Cu MO_887933271 505_001	5.4504216015300 01	2.4241832490740 016	N/A	N/A	N/A
<u>fcc</u> <u>∡*Expand</u>	EAM_Johnson_Ne arestNeighbor_Cu MO_887933271 505_001	3.61472985148	3.5400001233123 68	184.172808464	115.324864339	68.8519693906
<u>SC</u> ✓ <u>Expand</u>	EAM_Johnson_Ne arestNeighbor_Cu MO_887933271 505_001	2.3724498152700 004	3.2634735779698 41	270.847253148	24.4996165814	-17.5854303931

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001
- ¥

Cubic Crystal Basic Properties Table

Species: Cu

	Model	Lattice Constant [Â] Ø	Cohesive Energy [eV]	c11 [GPa] Ø	c12 [GPa] Ø	c44 [GPa] Ø
<u>bcc</u> <u>₽[*]Expand</u>	EAM_Johnson_Ne arestNeighbor_Cu MO_887933271 505_001	2.85939610004	3.6063831577047 547	146.26087765300 002	137.95217564700 002	91.9367752334
diamond ✓Expand	EAM_Johnson_Ne arestNeighbor_Cu MO_887933271 505_001	5.4504216015300 01	2.4241832490740 016	N/A	N/A	N/A
fcc <u>✓Expand</u>	EAM_Johnson_Ne arestNeighbor_Cu MO_887933271 505_001	3.61472985148	3.5400001233123 68	184.172808464	115.324864339	68.8519693906
<u>SC</u> ✓ <u>Expand</u>	EAM_Johnson_Ne arestNeighbor_Cu MO_887933271 505_001	2.3724498152700 004	3.2634735779698 41	270.847253148	24.4996165814	-17.5854303931

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001
- ¥

Cubic Crystal Basic Properties Table

Species: Cu

	Model	Lattice Constant [Å] Ø	Cohesive Energy [eV]�	c11 [GPa] Ø	c12 [GPa] Ø	c44 [GPa]
<u>bcc</u> <u>≰*Expand</u>	EAM_Johnson_Ne arestNeighbor_Cu MO_887933271 505_001	2.85939610004	3.6063831577047 547	146.26087765300 002	137.95217564700 002	91.9367752334
diamond ✓Expand	EAM_Johnson_Ne arestNeighbor_Cu MO_887933271 505_001	5.4504216015300 01	2.4241832490740 016	N/A	N/A	N/A
<u>fcc</u> , <u>⊀Collapse</u>)	EAM_Johnson_Ne arestNeighbor_Cu MO_887933271 505_001	3.61472985148	3.5400001233123 68	184.172808464	115.324864339	68.8519693906
	EAM_Dynamo_Ac kland_Tichy_Cu MO_17902599073 8_004	3.61500008404	3.5193531525631 51	169.86300971400 001	122.09887464100 001	76.6212942879

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001

V

^o Tests

ElasticConstantsCubic__TD_011862047401_003

Measures the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. Error estimate is reported due to the numerical differentiation.

This version fixes the number of repeats in the species key.

Test	Test Results	Link to Test Results page	Benchmark time 😧
ElasticConstantsCubic_bcc_CuTE_091603841600_003	⊮ [≭] expand	Q view	2375
ElasticConstantsCubic_fcc_CuTE_188557531340_003	⊮ [≭] expand	Q view	48734
ElasticConstantsCubic_sc_CuTE_319353354686_003	⊮ [™] expand	Q view	47151

- •
- •
- •
- •
- •
- •

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001

¥

^o Tests

ElasticConstantsCubic__TD_011862047401_003

Measures the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. Error estimate is reported due to the numerical differentiation.

This version fixes the number of repeats in the species key.

Test	Test Results	Link to Test Results page	Benchmark time 😧
ElasticConstantsCubic_bcc_CuTE_091603841600_003	<pre></pre>	Q view	2375
ElasticConstantsCubic_fcc_CuTE_188557531340_003	<pre></pre>	Q view	48734
ElasticConstantsCubic_sc_CuTE_319353354686_003	∝ [≭] expand	Q view	47151

Usertime multiplied by the Whetstone Benchmark. This number can

be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001
- \mathbf{V}

^o Tests

ElasticConstantsCubic_TD_011862047401_003

Measures the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of th	Full results page.
strain. Error estimate is reported due to the numerical differentiation.	

This version fixes the number of repeats in the species key.

Test	Test Results	Link to Test Results page	Benchmark time 😧
ElasticConstantsCubic_bcc_CuTE_091603841600_003	⊮ [≉] expand	Q view	2375
ElasticConstantsCubic_fcc_CuTE_188557531340_003	⊮ [≉] expand	Q view	48734
ElasticConstantsCubic_sc_CuTE_319353354686_003	⊮ [™] expand	Q view	47151

- •
- •
- •
- •
- •
- •

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001

.

^o Tests

ElasticConstantsCubic__TD_011862047401_003

Measures the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. Error estimate is reported due to the numerical differentiation.

This version fixes the number of repeats in the species key.

Test	Test Results	Link to Test Results page	Benchmark time
ElasticConstantsCubic_bcc_CuTE_091603841600_003	∡ [≭] expand	Q view	2375
ElasticConstantsCubic_fcc_CuTE_188557531340_003	r [≭] expand	Q view	48734
ElasticConstantsCubic_sc_CuTE_319353354686_003	∝ [≠] expand	Q view	47151
•			
Expan	d a property	synopsis.	
•			

•

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001

¥

^o Tests

ElasticConstantsCubic_TD_011862047401_003

Measures the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. Error estimate is reported due to the numerical differentiation.

This version fixes the number of repeats in the species key.

Test	Test Results	Link to Test Results page	Benchmark time O
ElasticConstantsCubic_bcc_Cu_TE_091603841600_003	∝ * expand	Q view	2375
ElasticConstantsCubic_fcc_CuTE_188557531340_003	∝ * expand	Q view	48734
ElasticConstantsCubic_sc_CuTE_319353354686_003	× collapse	Q view	47151
Isothermal elastic constants for a cubic crystal at constant tem			
(For more information, see the property definition elastic-constants- Crystal type = ["sc"] a = 2.37244981527 angstrom Species = ["Cu"] Basis atom coordinates = [[0.0 0.0 0.0]]	isothermal-cubic-crystal-npt)		

- Further down the model page for
- EAM_Johnson_NearestNeighbor_Cu_MO_887933271505_001
- 1

^o Wiki

Description

This **Model** implements the potential developed by R.A. Johnson for fcc metals as described in the reference above (see Source Citations). In particular, this model is applied to copper (Cu).

Parameters

Symbols (matching the reference):

 $r_e, \phi_e, \gamma, f_e, \beta, E_c, \alpha, \rho_e.$

Corresponding variables in code:

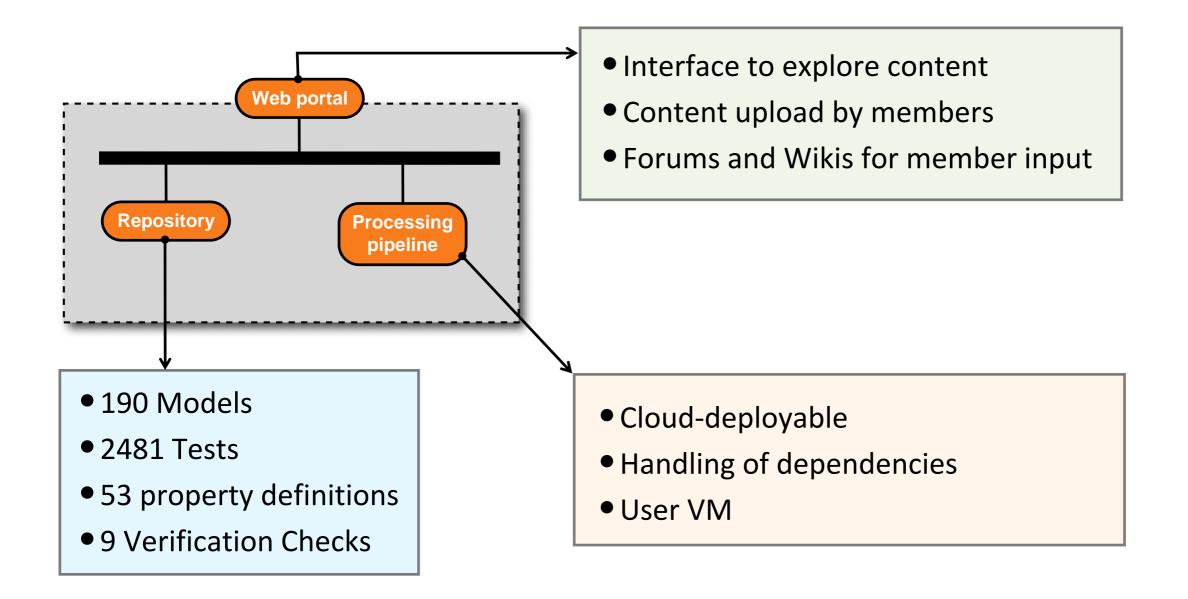
JEAM_R0, JEAM_PHI0, JEAM_GAM, JEAM_G0, JEAM_BET, JEAM_EC, JEAM_ALF, JEAM_RHO0, where the prefix JEAM emphasizes the fact that each variable corresponds to the "Johnson Embedded Atom Potential".

Warning: The model uses other parameters DIM, SPECCODE and MODEL_CUTOFF denoting the dimensionality of the space (3 by default), the number of species (1, by default) and the cut-off radius (3.5 Angstrom by default), respectively. Default values have been hardcoded and, in principle, they should not be modified.

Details

The total potential energy of a system of N atoms is assumed to take the form $E = \sum_{i=1}^{N} E_i$, such that

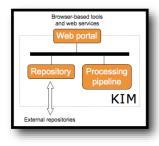
$$E_i = \sum_{i=1}^{N} \left[F(\rho_i) + \frac{1}{2} \sum_{j=1}^{m} \phi(r_{ij}) \right],$$


and

where E_i denotes the energy per atom i, $F(\rho_i)$ is the embedding function contribution, $\frac{1}{2} \sum_{j=1}^{m} \phi(r_{ij})$ is the two-body contribution to the energy, ρ_i stands for the electron density at atom i, and $f(r_{ij})$ is the atomic electron density of atom j as a function of the distance from its center r_{ij} , while j is one of the m neighbors of the atom i.

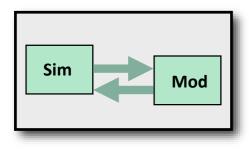
 $\rho_i = \sum_{i=1}^m f(r_{ij}),$

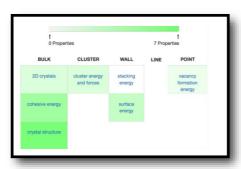
• • •


Current Status (Aug. 2, 2018)

Software supporting KIM API:

ASAP, ASE, DL_POLY, GULP, LAMMPS, libAtoms/QUIP, nanoHUB, Potfit, Quasicontinuum, VirtualFab, MDStressLab


Summary


KIM provides archival permanent storage of interatomic models, tests, and reference data with known provenance.

MO_394669891912_001 MO_142799717516_001 MO_884343146310_001 MO_748534961139_001 MO_212700056563_001 MO_104891429740_001 MO_179025990738_001 MO_977363131043_001

All KIM content is citable with unique permanent identifiers. This makes it possible to reproduce simulation results in the future.

Models stored in the OpenKIM Repository are portable as they conform to an API that allows them to run seamlessly with any KIM-compliant simulation code.

Models are tested against a user-extendible set of calculations for well-defined material properties using an automated processing pipeline.

OpenKIM

"All models are wrong but some are useful." — George E. P. Box

Welcome to the Knowledgebase of Interatomic Models!

OpenKIM is an online framework for making molecular simulations reliable, reproducible, and pointeratomic models are archived in OpenKIM, verified for coding integrity, and tested by computi material properties. Models conforming to the KIM *application programming interface* (API) work that have adopted the KIM API standard.

Become a member to get updates and vote on KIM policy

Q Explore	🗞 Use	Contribute
Explore the predictions of interatomic models for different material properties. • <u>Getting Started</u> • <u>Search by Material</u> • <u>Search by Property</u> • <u>Developer Directory</u>	Use a KIM interatomic model with a simulation code. • <u>Install the KIM API</u> • <u>Find a Model</u> • <u>Supported Codes</u> t here if	Contribute content to the OpenKIM project. • <u>Become a Member</u> • <u>Contribute Models, Tests, Data</u> • <u>Contact Us</u>
¶News	are / to KIM	Model Drivers 23