Some Current Interatomic Potential Applications at Sandia

Atomistic Simulations for Industrial Needs August 1 – 3, 2018, Rockville, MD X. W. Zhou, R. B. Sills, M. E. Foster, and R. E. Jones Sandia National Laboratories, USA

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Outline

1. Metal (e.g., Fe-Ni-Cr) embedded atom method potential¹

Suitable for close packed structures

2. Semiconductor (e.g., In-Ga-N) Stillinger-Weber potential²

Suitable for tetrahedral structures

4. Al-Cu-H bond order potential³

Suitable for compounds

(1) Zhou et al, to be published; (2) Zhou et al, PRB, 88, 085309 (2013); (3) Zhou et al, NJC, 42, 5215 (2018).

Fe-Ni-Cr-H embedded-atom method (EAM) potential

Five criteria of high-fidelity Fe-Ni-Cr interatomic potential

- 1. give reasonable energy and volume for various compositions
- 2. permit stable high temperature MD simulations
- 3. prescribe well the elastic constants
- 4. capture the correct stacking fault energy (γ_{sf})
- 5. pass stringent MD validation tests

Status of literature potentials

- 1. The potential we published (CALPHAD 1993, 17, 383) did not consider the four criteria
- 2. Smith and Was' potential (PRB 1989, 40, 10322) was fitted to effective atoms and did not consider stacking fault energy
- 3. The 2013 version of Bonny et al's potential (MSMSE 2013, 21 085004) predicts phase separation

- 4. The 2011 version of Bonny et al's potential (MSMSE 2011, 19, 085008) predicts negative slope of stacking fault energy with Ni composition
- Tong et al's potential (Mol. Sim. 2016, 42, 1256) predicts large negative stacking fault energy (~ -200 mJ/m²)

Energy and volume trends

(a) Energy

(b) Lattice constant

Calculated welling parameters for Ni and Cr in bcc Fe are 10% and 8% respectively, compared to 5% and 4% experimental values (King, J. Mater. Sci., 1, 79, 1966)

Heats/Gibbs free energy of solution

Elastic constants

Experimental data for 316L from (1) Ledbetter, Ultrasonics 1985, 23, 9; (2) Bonny et al, MSMSE 2011, 19, 085008; (3) Bonny et al, MSMSE 2013, 21, 085004.

Stacking fault energy

area ~ 1000 nm^2

The predicted stacking fault energies match well with experimental results (see, for example, Vitos et al, PRL 2006, 96, 117210, and references therein).

Melting

(a) bcc Fe, atom map, $T_m = 2399$ K (b) bcc Cr, atom map, $T_m = 2133$ K X (c) fcc Ni, atom map, $T_m = 1346$ K (e) bcc $Fe_{0.6}Ni_{0.2}Cr_{0.2}$, atom map, equilibrated at 1705 K (d) fcc $Fe_{0.6}Ni_{0.2}Cr_{0.2}$, atom map, $T_m = 2100 \text{ K}$ х atom: • Fe • Cr • Ni structure: • fcc • bcc • hcp • undefined y

Growth simulations

Semiconductor Stillinger-Weber (SW) potential

InGaN/GaN misfit dislocation

Chu et al, PRM, 2, 013402 (2018)

Growth simulations challenging

Random condensation of adatoms leads to amorphous structures

> The equilibrium phase must be more stable than ANY OTHER structures

$$\mathbf{SW \text{ potential format}}_{E} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=i_{1}}^{i_{N}} \left[V_{IJ}^{R}(r_{ij}) - V_{IJ}^{A}(r_{ij}) + u_{IJ}(r_{ij}) \sum_{\substack{k=i_{1}\\k\neq j}}^{i_{N}} u_{IK}(r_{ik}) \left(\cos \theta_{jik} + \frac{1}{3} \right)^{2} \right]$$

- \succ i₁, i₂, ..., i_N, a list of all i's neighbors
- $\succ V^{R}_{IJ}(r), V^{A}_{IJ}(r), u_{IJ}(r)$ are pair functions
- $\succ \theta_{jik}$: bond angle
- Easily ensure stability of tetrahedral structures

Two criteria of SW potential

- 1. Capture the lowest energy for the equilibrium phases to be studied
- 2. Best optimize the other properties

SW potential database

Low flexibility on property trends

Cd, Te energy trends

Cd-Te energy trends

Al-Cu-H analytical bond order potential (BOP)

X. W. Zhou, D. K. Ward, and M. E. Foster, J. Alloys Compds. 2016, 680, 752;
 X. W. Zhou, D. K. Ward, M. Foster, J. A. Zimmerman, J. Mater. Sci., 2015, 50, 2859.

Six criteria of high-fidelity Al-Cu-H interatomic potential

- 1. A high stacking fault energy of Al observed in experiments
- 2. Properties trends of a variety of stable and metastable structures
- 3. A positive heat of solution of Cu in Al
- 4. H2 \Leftrightarrow 2H chemical reaction
- 5. $Al_{1-x}H_x \rightarrow Al + H_2$ and $Cu_{1-x}H_x \rightarrow Cu + H_2$ phase separations
- 6. Robust MD simulations of Al-rich side of the Al-Cu phase diagram

Status of literature potentials

Al stacking fault energy γ_{sf}

Model/Exp.	$\gamma_{\rm sf}$
EAM-CY	1
EAM-Mishin1	141
EAM-BAM	85
EAM-VC	71
EAM-MSAH	126
EAM-Zhou	44
EAM-MKBA	125
EAM-JNP	0
MEAM	141
REAX-LJGS	0
REAX- Ojwang	1
Our BOP	133
Exp.	120-144,135

Zhou et al, J. Alloys Compds. 680, 752 (2016)

- 1. Many literature potentials do not capture high Al γ_{sf}
- 2. Many literature potentials do not capture θ , θ ' Al₂Cu phases
- 3. Heat of solution of Cu in Al was misinterpreted
- 4. Most literature potentials do not capture $H_2 \Leftrightarrow 2H$, and $Al + H_2$ and $Cu + H_2$ phase separation
- 5. Robust MD validation tests were not passed
 (a) Al-Cu phase diagram
 (b) crystal structure of the structure of

Energy and Volume Trends Heat of Solution Al, Cu, and Al-Cu Cu-H Al-Cu Heat of formation ΔH_{f} (eV/atom) (*a*) cohesive energy E_c (a) cohesive energy E_c (**b**) atomic volume Ω 3.0 -2.2 Cu AlCu Al - DFT - BOP H-in-Cu Heat of solution: ٥di Ec (eV/atom) -0.5 0.70 eV/atom (BOP) atomic volume Ω (Å³/atom) --- EAM-Mishin2 0.54 eV/atom (exp. from McLellan et al) otri otri ·*·· MEAM 12 -DFT 2.0 opara O EXP -----BOP grap 10 ocP4 Cohesive Energy (eV) -ADP 8^{fcs}zb energy] ocP4 --- EAM-CY -2.01.0 O EXP 8c16 ∘B1 ₀B2 -2.5 8th, ⁶fcc cohesive L21 BOP D022 -3.0L21 0.0 DFT (scaled) - DFT (scaled) L11 DFT DFT -3.5 θ' fcc Exr Exp fcc -3.7 -----BOP ùuh-NaCl Cuh-gra Cuh-wz Cuh-zb Cu4H-O Cu4H-T Cu-fec Cu4H-T iH-CsCl Cu4H-O uH-NaCl CuH-zb Cu-fee uH-CsC ··· A·· EAM-Mishin1 ··· B·· REAX-Ojwang Cu₂H-tr CuH₂-tr CuH-gra CuH-gra CuH-w 0.2 0.4 0.8 1.00.0 0.6 Cu₃H-tet $H_{2^{-1}}$ uH)2-rhc ···*·· MEAM Mole fraction X_{Cu} O EXP -4.2 Al-H St Con St Con Start 100 CO 1. Energy and volume **(b)** atomic volume Ω (*a*) cohesive energy E_c (**b**) atomic volume Ω trends by potential (eV/atom)AlCu Al Cu Atomic volume Ω (Å³/atom) matches well with those BOP -0.5 30 —DFT -DFT 15 ₽ exp Volumes (Å³/atom) 10 10 ----BOP by DFT --- ADP പ്പ്-1.5 --- EAM-CY conered -2.5 O EXP 2. Heat of solution supports -3.0 Cohesive -3.5 stabilities of θ and θ' + DFT 5 × BOP -DFT --- EAM-Mishin1 -----BOP Al₂Cu phases ---- REAX-Ojwang --- EAM-Mishin2 ······ MEAM AlH₂-rut AlH-B2 AlH-zb AlH-B1 AlH-wz AlH-gra Al-fcc AlH₂-rθ' AlH_{0.25,0}-fcc AlH_{0.25,T}-fcc O EXP O EXP

1. Traditionally, ΔE_{ds} of Cu in Al is for dissolving a Cu atoms

2. Should really be for dissolving Al_2Cu molecules

ADP	1.09
EAM-CY	-0.06
BOP	0.14
DFT	0.40
Exp.	0.45

$H_2+H\rightarrow H+H_2$ chemical reaction

Hydrogen crystal to H₂ gas

 $H_2+H\rightarrow H+H_2$ energy profiles

Al + H₂ and Cu + H₂ Phase Separation

(a) $N_H/N_{Cu} = 0.20$ with all atoms shown (b) only H atoms shown

MD simulations H₂ absorption

Such simulations are not possible without capturing the $H + H_2 \Leftrightarrow H_2 + H$ reaction.

Conclusions

- 1. Advanced potentials enable simulations of chemical reactions
- 2. Ensuring the stability of the equilibrium phase is challenging
- 3. Simple potentials easily capture the equilibrium phase
- 4. Traditional potential parameterizations target at specific properties important to the applications
- 5. New potential parameterization based on machine learning needs to incorporate traditional ideas