MULTISCALE APPROACH AND WORKFLOW DEVELOPMENT FOR ENHANCED UNDERSTANDING OF MANUFACTURING MATERIALS

08.01.2018 NCCoE Building Ryan Thomas

The Department of Energy's Kansas City National Security Campus is operated and managed by Honeywell Federal Manufacturing & Technologies, LLC under contract number DE-NA0002839 Contents of this presentation may contain Honeywell proprietary information

National Security Campus Operated by Honeywell

ELECTRICAL/ ELECTRONIC

- Microelectronics
- Arming, Fusing and Firing Systems
- Embedded Software
- Fiber Optics
- Fire sets / Initiators
- Optics and Initiators
- Radars
- Secure Electronics
- Sensors
- RF / Antenna Design
- Telemetry
- RF / Microwave
- Film Deposition
- Systems Integrator

MECHANICAL

- Containers
- Mechanisms
- Machining
- Solid Modeling
- Prototyping
- Special Materials and Processes
- Welding Technologies

ENGINEERED MATERIALS

- Ceramics
- Polymer Develop. and Production
- Materials Engineering
- Organic / Inorganic / Metallurgy
- Gas Transfer Systems

-60 Years of Continuous Service to Dept. of Energy -Associates ~ 2500 -Area ~1.5 million sq. ft. -Kansas City, Missouri

Centers of Excellence

Simulation Technology History at KCNSC

- Have used Finite Element Analysis (FEA) to troubleshoot mechanical issues since 1979
 - 1979 1985: NASTRAN
 - 1985 2015: Abaqus

- Honeywell's simulation group, AESA, has grown from a few individuals to ~28 FTEs and conducts 150-200 projects per year
- First molecular dynamics simulation in 2014
- First ab initio simulation in 2015
- Computational Materials Group Started 2017

Honeywell

Who is AESA?

- Advanced Engineering Simulations & Analysis
- A group focused on creative problem solving
 - Simulations Virtual components/materials + manufacturing processes
 - Data analytics and visualizations
 - Innovative technology solutions
- Strong team of 28 mechanical engineers, a chemical engineer, and a physicist

AESA VISION:

To develop the technology and deploy simulation based solutions that serve as KCNSC engineers' first stop for manufacturing process modeling, development cycle acceleration, and other science-based insight.

Simulation first!

Who are AESA's customers and collaborators?

Within the NSE

- PRTs
- MC owners
- Simulation analysts from labs and production sites
- Anyone in the plant with a need for simulation support!
- External
 - Universities and technology companies on the cutting edge of innovative research and design

Simulation Technology at KCNSC

Value in Using Simulation Tools for Small Lot Production Environments

- Reduce or eliminate actual prototype builds.
- Reduce time to evaluate processes, designs, and/or fixturing.
- Allows for a more robust process, product or fixture.
- Uncover production problems before they occur.
- Allows for environmentally friendly 'virtual' evaluations.
- Aid if production failures do occur.

Simulations can make you agile and flexible to change for <u>rapid response</u> to needs and requirements.

Structure and Order to Technology Deployment

- Focus and use of simulation technology
 - Exploration of new, high risk production process areas and materials
 - Exploration of known challenge areas with respect to products and processes
- Close engagement with the engineering teams brings forward solutions that advance technology with greater understanding and surety.

How Does AESA engage with Customers and Collaborators?

- vCons (virtual consultants) and other tools on the AESA website
 - Simple vetted simulation tools anyone in the plant can use whenever they need

Virtual Mock-ups

 A virtual twin of a component or assembly that evolves as the component passes through design iterations

Virtual Mock-ups Philosophy

- AESA is a service organization
- Proactive engagement with PRTs
- "Simulate First"
 - Reduce or eliminate physical prototype iterations
 - Reduce time to evaluate processes, designs, and/or fixturing
 - Allows for more robust, optimized process, product, or fixture
 - Uncover production problems before they occur
 - Aid if production failures do occur

Understanding Manufacturing Materials

- How do we quickly address material issues?
- How do we begin to understand materials across a wide range of length scales?

https://www.osti.gov/servlets/purl/1366804

Simulate First – Connecting the Length Scales

Interface Adhesion, Phase Formation and Reactivity

Thermal and Electrical Properties on Crystal Materials

Molecular Discriminator for XRD and NMR on Reverse Eng.

Polymer Composition and Morphology Architecture Effect

Technologies

- Mesoscale Computations
 - Meshing Capabilities
 - · CAD Geometry Manipulation
 - Coarse-Grained
 - Molecular Dynamics
 - Quantum Mechanics
 - Correlation Tools
 - Kinetics
 - · Thermodynamics

Services

- AM Metals
 - Phase formation/Oxidation
 - Elastic Constants
 - Thermal Aging and Diffusivity
- AM Polymers
 - Chemical Functionality
 - Viscoelasticity
 - Thermal Properties
 - Solubility and Diffusivity
- Reverse Engineering
 - NMR Spectrums
 - XRD Patterns
- Materials Information Management

Skills

- Chemical Engineering
- Physics
- Materials Engineering

Mesoscale Focus Area Thrusts

Mesoscale Focus Area Thrusts

Investigating Silicone Polymer Production

Allowable branching limits were determined using MD This matched predictions derived from experiment.

Polymer Solubility and Compatibility

Polymer solubility can be calculated for any given chemical formulation

Solubility $(J/cm^3)^{1/2}$ Molecular Dynamics = 18.5 Experimental Value = 19.9

Total time to build, run and analyze simulation: **4 hours**

Unclassified/Unrestricted Release

Honeywell

Mixing Polymers - Additive Manufacturing

- Great variety in polymers available for 3D printing
- Provide direction for choosing a blend that will yield improved properties for AM
 - Simulate polymer compatibility
 - Watch polymer movement during simulation
 - Compare solubility parameters

ABS and SBS chains at initial Energy

ABS and SBS chains at lowest Energy

Mesoscale Focus Area Thrusts

Advanced development

- Material model development legacy materials
 - Connecting the length scales with RTV
- New tools and capability Development
 - Multistage simulations
 - Hydrogen embrittlement
 - vCons for analytical lab support
 - CALPHAD Methods
 - Gold embrittlement

trat

Honeywell

DM Model: CASTEP: Diffraction Pattern Prediction

QM Model- CASTEP- Diffraction Pattern Prediction with crystals of Ti and different amount of Hydrogen content

Figure 13 Scheil solidification step diagrams for (a) Al-Si-Mg and (b) Al-Si-Mg-(Fe,Ti,Zn,Mn,Ni,Cu,Pb,Sn) systems, with compositions selected to be within the Renishaw specifications for powder bed Al alloys

Workflows

- Workflows at KCNSC: A plug-and-play simulation process/tool that can be used to determine material properties in a seamless and straightforward manner
 - Diffusion of small molecules
 - Stress/strain curves
 - Moduli
- What is important to us:
 - Plug-and-play of Materials and simulation types
 - Access to the workflow backbone to generate our own
 - High-throughput capabilities
 - Multi-scale/simulation linkages
 - Democratization of the tools for easy material property prediction
 - Rapidly and easily address problems within the manufacturing environment

Workflows (Not All Encompassing)

Software	Framework	Туре	Workflows	Cost to us	Creating Workflows
Vendor A	Assumed C++, closed	Wrapper GUI	Drag and drop	\$\$	Easy, but limited capabilities
Vendor B	Python/C++, some open	Wrapper/Proprie tary GUI	~Python backbone	\$	Very hard as of now
Vendor C	Unknown	Proprietary GUI	Widget	\$\$\$	N/A - Haven't tried
Vendor D	Unknown	Proprietary GUI	Drag and drop, stream lined	\$\$\$\$	Easy, but limited capabilities
Jupyter Notebooks	Python, open- source	Wrapper/User made	User Made	Free	Hard, extensive scripting

Current problem with commercial software is "**oversimplified**" Closed software built for non-computational chemists, limits extendibility

Mesoscale Focus Area Thrusts

•Design •Novel Material Development •ICME Methodology •New Simulation Tools

R&D Capability for Design

- Material model development for new materials
 - 3D printed materials
 - Siloxanes
 - Ti-6-4
 - Stainless steels
 - Aging of polymeric materials
- New tools to help drive "Simulate First" mentality
 - High-throughput analysis
 - Free energy methods
 - Machine learning to drive DOEs
 - "Big Data"/Data analytics

Unclassified/Unrestricted Release

Honeywell

Multiscale Modeling

- Generation of high fidelity models at each length scale
 - "vMats" for use with plug-and-play workflows
 - Connecting length scales using an ICME methodology

Integrated Computational Materials Engineering

What is ICME:

- Integrated
 - Material model linkages at multiple length scales
 - Bringing computational modeling into the design cycle
- Computational
 - Simulate first mentality, where we are trying to understand these materials using computational tools
 - Overarching framework built on material models, with variations analyzed computationally
- Materials Engineering The design and discovery of new materials

What does the ICME Methodology mean to KCNSC

• ICME methodology is used to gain a holistic understanding of the materials we use within the complex

NS

What does the ICME Methodology mean to NSC

 ICME methodology used to design new materials and manufacturing processes in a holistic manner

SS-304L: Thermodynamic-based process-structure modeling

Computational experiments allow new engineers to gain knowledge without conducting expensive trial-and-error experiments.

When computational experiments are conducted within optimization frameworks, rapid solutions are possible

Thermodynamic modeling can inform processing windows, property models

SS304L: ICME-based Strength Model

yield strength of at least 210 MPa

SS304L: ICME-based Weldability

Use existing models to develop an ICME-based universal welding criteria

Unclassified/Unrestricted Release

Honeywell

Solidus Temperature Modeling

Strength Modeling

Spinodal decomposition in Paliney

Susan, Donald F. et al. 2014. "Characterization of Continuous and Discontinuous Precipitation Phases in Pd-Rich Precious Metal Alloys." Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 45(9): 3755–66.

Mesoscale's Current Plan

- Modeling Infrastructure
 - Workflows/ELN Jupyter notebooks
 - PSP builder
 - Linking the length scales
 - Close collaboration with FEA group (monolithic)
- Codes
 - MD/Quantum codes
 - CALPHAD
- Materials Data
 - GRANTA
 - Hyperthought
- People (Open to collaborative efforts)
 - Big Data and network analysis
- Deep dive on materials
 - Comprehensive understanding of our SS304L
 - Ti alloys (exploration of composition space)
 - AM polymers

Unclassified/Unrestricted Release

Honeywell

Next Steps to Address

- Pain points and next steps
- Addressing "Big Data" and data science (e.g. social network graph to identify collaborative avenues in the complex)
- Linking the length scale codes Multiscale modeling
 - Use of ICME to help identify easy paths
 - Using codes outside our traditional infrastructure (e.g. MOOSE out of INL)
 - Cross-industry ICME collaboration
 - Creating a collaborative ICME group for lower length scales
 - Shared data on commonly used manufacturing materials

