

V.I. Yamakov¹, E.H. Glaessgen², Y. Mishin³

¹National Institute of Aerospace, Hampton, VA 23666
²NASA Langley Research Center, Hampton, VA 23681
³George Mason University, Fairfax, VA 22030

- Current advanced HPC hardware and levels of parallelism
- Current approaches and challenges in HPC for atomistic simulations
- Parallelization strategies in molecular dynamics
- Artificial neural networks in atomistic simulations
- HPCI lessons learned: Current achievements in the developed inhouse software

Development Trends in Computing Technology

HPC NASA/LaRC

Every architectural paradigm shift requires a substantial investment in dollars and workforce. Updating skillsets and rewriting applications.

4,356 nodes ~122 Pflops

NASA Advanced Supercomputing Division Electra Node ~1 TF

~7.24 Pflops

Computing hardware of increasing complexity requires constant redevelopment of the software to utilize it efficiently.

Hierarchy in hardware defines levels of parallelism

- Inter-node parallelism (Multiple Instructions Multiple Data): independent tasks with little communication
- Intra-node parallelism (MIMD + Single Instructions Multiple Data): multiple workers on the same tasks with intensive communication

Workers with same objective, doing different things

GPU: multiple repetition of identical operations (SIMD: e.g., matrix algebra)

The software code must be structured to efficiently explore the different levels of parallelism in the current HPC hardware

How can atomistic simulations efficiently explore the most current HPC architecture

Divide the system box into cells of size $\ge R_{cut}$. Limit the neighbor search up to the **nearest neighbor cells**.

Efficient for short range interactions, and allows for parallelization.

•

- Need to update interacting neighbors after each MD step
- Unaligned access (realignment takes time)
- Low arithmetic intensity (mostly book keeping and data transfer)
- Complex functional forms (not easily scalable)

$$S_{ijk} = 1 - f_c (r_{ik} + r_{jk} - r_{ij}) e^{-\lambda_{ijk} (r_{ik} + r_{jk} - r_{ij})}$$
$$S_{ij} = \prod_{k \neq i,j} S_{ijk}$$
$$W_i^{(p)} = -\sigma_i \left(\sum_{j \neq i} f_c(r_{ij}) S_{ij} b_{ij} \right)^{1/2}$$

Problems with MD/MC:

Classical MD/MC simulations use empirical potentials,

$$E_{i} = \frac{1}{2} \sum_{j \neq i} [A_{i}e^{-\alpha r_{ij}} - B_{i}S_{ij}b_{ij}e^{-\beta r_{ij}}]f_{c}(r_{ij}) - \text{fast, but inaccurate.}$$
$$A_{i}, B_{i}, \alpha, \beta - \text{fitted parameters}$$

- Quantum mechanics based (*ab-initio*) MD/MC simulations accurate, but slow.
- Both, classical and QM simulations have poor scalability.

Straight ANN potentials (gives atomic energy as an output)

- As accurate as, but faster than QM
- Shows poor transferability outside the training data set

ANNs offer highly efficient utilization of the manycore - GPU computing architecture

Problems with MD/MC:

Classical MD/MC simulations use empirical potentials,

$$E_{i} = \frac{1}{2} \sum_{j \neq i} [A_{i}e^{-\alpha r_{ij}} - B_{i}S_{ij}b_{ij}e^{-\beta r_{ij}}]f_{c}(r_{ij}) - \text{fast, but inaccurate.}$$
$$A_{i}, B_{i}, \alpha, \beta - \text{fitted parameters}$$

- Quantum mechanics based (*ab-initio*) MD/MC simulations accurate, but slow.
- Both, classical and QM simulations have poor scalability.

Guided ANN potentials (customized pot. parameters for each atom)

ANNs offer highly efficient utilization of the manycore - GPU computing architecture

Current Achievements in the Developed In-House Software

Scalability comparison for different potential types

Distributed (MPI) + shared memory (OpenMP) parallelization on 16 MPI nodes with 1-16 cores/node

ANN potential shows superior scalability

Scalability on a single node

ANN – Artificial Neural Network Machine Learning potential

TRF – Tersoff Potential

3-body potential (molecular crystals)

ADP – Angular Dependent Potential

many-body anisotropic potential (rare earth metals)

EAM – Embedded Atom Method

many-body isotropic potential (metal alloys)

N=500 100 MDS	EAM 16 threads	ANN 16 threads	DFT 32 nodes
Time, t (s)	0.39	14	46,688
t/t _{EAM}	1	35.7	119,107

N=72,000 100 MDS	EAM 4 nodes x 8 threads	ANN* 4 nodes x 8 threads	DFT 32 nodes extrapolated
Time, t	2.66 s	778 s	13.5 years
t/t _{EAM}	1	294.1	161,000,000

ANN: 10² – 10³X slower than EAM, but is much faster than DFT with comparable accuracy ANN is very efficient for massive parallelization

*No GPU yet

- The ongoing paradigm shift in HPC hardware requires redevelopment of the simulation algorithms and codes
- Current MD codes do not efficiently explore the new HPC architecture, but progress is being made
- Machine learning strategies, such as ANN, introduce new approaches (and new challenges) in atomistic simulations
- Lessons learned from the HPCI effort at NASA LaRC helped significantly to improve in-house codes
- Future work: exploring GPU performance