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Outline

• Current advanced HPC hardware and levels of parallelism 

• Current approaches and challenges in HPC for atomistic simulations

• Parallelization strategies in molecular dynamics

• Artificial neural networks in atomistic simulations

• HPCI lessons learned: Current achievements in the developed in-

house software
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Exa

Development Trends in Computing Technology

Every architectural paradigm shift requires a substantial investment in dollars and workforce. Updating skillsets and rewriting applications.

PDP, 
IBM,
Vax 
Series

ILLIAC IV,
VPS-32, 
Convex,
CDC Cyber

Cray Series,
SGI, National 
Aerodynamic 
Simulator 

Intel Paragons,
IBM SPs

HyperCube, 
MasPar, 
CM-2, CM-5

SGI ICE Altix,
HP Apollo 6000 
+ NVidia Kepler 
K40 GPU

1960s     1970s             1980s               1990s                    2000s        …       2017

HPC NASA/LaRC
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Current Advanced HPC Hardware

Computing hardware of increasing complexity requires constant redevelopment of the software to utilize it efficiently.

4,356 nodes  ~122 Pflops

ORNL Summit Node ~40 TF
Oak Ridge NL: Summit documentation for users

NASA Advanced 
Supercomputing Division

Electra Node
~1 TF

11,440 nodes  
64 nodes with 184,320 NVIDIA 

GPU cores
~7.24 Pflops

Dual Socket, 20-Core
Xeon Skylake

2 Threads/Core, AVX-512

192 GB RAM

GPU
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MIMD (soccer)

Levels of Parallelism

Distributed Memory - Message Passing Interface (MPI) 

Inter-node communication: slow, but scalable to unlimited number of nodes 

Intra-node communication: 
fast, but scalability is limited 
to the node’s resources

Node 1 Node 2 Node n

The software code must be structured to efficiently explore the different levels of parallelism in the current HPC hardware

Hierarchy in hardware defines levels of parallelism 
Ø Inter-node parallelism (Multiple Instructions – Multiple Data): 

independent tasks with little communication
Ø Intra-node parallelism (MIMD + Single Instructions – Multiple Data):

multiple workers on the same tasks with intensive communication
Ø GPU: multiple repetition of identical operations (SIMD: e.g., matrix algebra)

Workers with same objective, 
doing different things

SIMD (rowing)
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Current Approaches and Challenges in HPC for 
Atomistic Simulations

How can atomistic simulations efficiently explore 
the most current HPC architecture
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One MD step:

For each atom:
1. Identify interacting 

neighbors at R < Rcut
2. Calculate the force on 

each atom exerted by 
its neighbors

3. Integrate Newtonian 
equation of motion for 
each atom

Move all atoms and 
repeat

Molecular Dynamics Algorithm

Evolve a system of a 
large number of atoms 
according to the 
classical Newtonian 
dynamics: a = F/m

!"#$
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Link-Cell Technique
(Search for nearest neighbors)

Divide the system box into 
cells of size              .
Limit the neighbor search up 
to the nearest neighbor cells.  

≥ "#$%

Efficient for short range 
interactions, and allows 
for parallelization.

"#$%
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Distributed Memory - Message Passing Interface (MPI) 

Inter-node communication: slow, but scalable to unlimited number of nodes 

Node 1 Node 2 Node n

Spatial decomposition distributes 
system volume to available nodes

Parallel loops 
over atoms

• Each node works on a subdomain of 
the system

• Calculations over atoms in a 
subdomain are parallelized over the 
node’s resources (CPUs + GPUs)

• Excellent scalability with growing system 
size – load/node remains constant

• Limited inter-node communications
• Utilizes multi-core parallelism inside a 

node – high loads per node are effectively 
distributed over the node resources

Parallelization Strategy in MD

Shared zone
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1 2 3

1 2 3

:
:

After n MD steps – unaligned array

Initial aligned configuration Atomic array (coordinates, velocities, etc.)

Neighbors of 1 Neighbors of 2 Neighbors of 3

• Need to update interacting neighbors after each MD step
• Unaligned access (realignment takes time)
• Low arithmetic intensity (mostly book keeping and data transfer)
• Complex functional forms (not easily scalable)

!"#$ = 1 − () *"$ + *#$ − *"# ,-./01 2/13201-2/0
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Factors Impeding Scalability
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Artificial Neural Networks in Atomistic 
Simulations

• As accurate as, but faster than QM
• Shows poor transferability outside the training data set 

Problems with MD/MC: 
➢ Classical MD/MC simulations use empirical potentials,                                                                        – fast, but inaccurate.

➢ Quantum mechanics based (ab-initio) MD/MC simulations – accurate, but slow.
➢ Both, classical and QM simulations have poor scalability.
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Straight ANN potentials (gives atomic energy as an output)

Material Atomic 
environment

89
8:
⋮
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Structure 
parameters Neural Network

!"
Atomic potential energy

)", 1", >, β – fitted parameters

ANNs offer highly efficient utilization of the manycore - GPU computing architecture
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Artificial Neural Networks in Atomistic 
Simulations

As accurate (~meV/atom) as but faster than QM, and shows improved 
transferability due to the involvement of the potential function. 
High computational efficiency on modern HPC hardware 

Guided ANN potentials (customized pot. parameters for each atom)

Problems with MD/MC: 
➢ Classical MD/MC simulations use empirical potentials,                                                                        – fast, but inaccurate.

➢ Quantum mechanics based (ab-initio) MD/MC simulations – accurate, but slow.
➢ Both, classical and QM simulations have poor scalability.
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Potential energy function
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environment
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Classical MD

ANN MD

Ab-initio MD

ANNs offer highly efficient utilization of the manycore - GPU computing architecture
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Current Achievements in the Developed In-House Software

HPCI Lessons Learned
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Speed Up of MD simulations

Scalability comparison for different potential types
Distributed (MPI) + shared memory (OpenMP) parallelization on 16 MPI nodes with 1-16 cores/node 

ANN – Artificial Neural Network 
Machine Learning potential

TRF – Tersoff Potential
3-body potential (molecular crystals)

ADP – Angular Dependent 
Potential
many-body anisotropic potential (rare 
earth metals)

EAM – Embedded Atom 
Method
many-body isotropic potential (metal 
alloys)ANN potential shows superior scalability  

Scalability on a single node

8 MPI nodes x 16 cores/node

16 MPI nodes x 8 cores/node

Favors multicore/node 
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Time Comparison of Various Sim. Methods  

N=500 
100 MDS

EAM
16 threads

ANN
16 threads

DFT
32 nodes

Time, t (s) 0.39 14 46,688
t/tEAM 1 35.7 119,107

N=72,000 
100 MDS

EAM
4 nodes x 
8 threads

ANN*
4 nodes x 
8 threads

DFT
32 nodes

extrapolated
Time, t 2.66 s 778 s 13.5 years
t/tEAM 1 294.1 161,000,000

ANN: 102 – 103X slower than EAM, but is much faster than DFT with comparable accuracy
ANN is very efficient for massive parallelization

N=32
108

256
500

72,000

N=72,000

*No GPU yet
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Conclusions

• The ongoing paradigm shift in HPC hardware requires 
redevelopment of the simulation algorithms and codes

• Current MD codes do not efficiently explore the new HPC 

architecture, but progress is being made

• Machine learning strategies, such as ANN, introduce new 

approaches (and new challenges) in atomistic simulations 

• Lessons learned from the HPCI effort at NASA LaRC helped 

significantly to improve in-house codes

• Future work: exploring GPU performance


