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MOLECULAR DYNAMICS
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Used for in silico study of several chemical and materials science phenomena

Materials growthCatalysis Electrochemistry

Input: Atomic forces { Fi (Rij ) } and time-step

Quantum mechanics Semi-empirical Machine learning
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LIMITATIONS OF CLASSICAL POTENTIALS
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Non-transferable

Inaccurate forces in 
regimes far from 
equilibrium 
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# of points = 408

Non-generalizable

No common 
potential functional 
form across materials

Potential fit for binary Al-Cu 
system might not be accurate 
for elemental Al, Cu.

Bianchini et al., Modelling Simul. Mater. Sci. Eng. 24 045012 (2016),     Choudhary et al., Scientific Data, 4 (2017)
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MOTIVATION
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ML force fields provide balance between cost, accuracy and versatility

Accuracy

Versatility

1/Cost

Accuracy

Versatility

1/Cost

Accuracy

Versatility

1/Cost

V. Botu, “Surface Chemistry with Machine Learning and Quantum Mechanics”, Doctoral Dissertation, University of Connecticut (2016)

Semi-empiricalQuantum mechanics Machine learning
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MACHINE LEARNING: AN EXAMPLE
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What should be
the credit limit ?

“ ”

Index Feature Value

1 Age 23

2 Gender Male

3 Salary $30,000

4 Years in job 1 year

… … …

n Current debt $15,000

ypredict = F(Xnew)

Age Gender … Current debt Credit limit

25 M … $10,000 $5,000

19 F … $50,000 $1,000

… … … … …

30 M … $20,000 ?

25 F … $15,000 ?

y = F(X)
Machine learning finds 
approximate function

yX
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ML FORCE FIELDS: KEY CONCEPT
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Neighborhood
of atom i

Fingerprinting
atom i

Given
configuration

Fingerprint of
atom i

R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim,
Machine Learning and Materials Informatics: Recent Applications and Prospects, npj Computational Materials 3, 54 (2017)

Machine learning Atomic
fingerprints

(X)

Potential energy
and/or atomic forces

(y)

Collect
fingerprints

Reference
DFT
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ML FORCE FIELDS: METHODOLOGY
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1. Reference data should be exhaustive (as ML is interpolative)
2. Atomic Fingerprint is the key
3. Choose ML method based on fingerprint and amount of reference data

Data Generation
(DFT, HF)

Reference atomic 
configurations & energies 

(or forces)

Numerical fingerprints
& energies
(or forces)

Step 1 Step 2 Step 3

Force field

Fingerprinting
(SOAP, AGNI, Symmetry functions)

Machine Learning
(KRR, NN, GPR)

R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim,
Machine Learning and Materials Informatics: Recent Applications and Prospects, npj Computational Materials 3, 54 (2017)
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ML FORCE FIELDS: LEARNING ENERGY
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Behler, J. Chem. Phys. 145, 170901 (2016),    Thompson et al., J. Comput. Phys. 285, 316 (2015),    Deringer PRB 95, 094203 (2017)

Other fit quantities

XDFT

(Stress)▽HEML

FDFT

(Force)▽rEML

Measure of similarity with training set
εi = ∑t αt K(fi,ft)

GAP (similarly SNAP)
Successful ML FF for Ta, a-C, Si

Total energy

Fit quantity

Atomic energyAtomic ML modelAtomic fingerprint

MLf1

f2

fn

ε1

ε2

εn

EML EDFT

Breaking total energy into atomic energies
EML = ∑εi

ML

ML
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ML FORCE FIELDS: LEARNING FORCES
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Pros Cons

Energy-based 
ML FF

• Well-understood (available codes)
• Momentum conserved for isolated 

system

• Based on ill-defined atomic energies
• Indirect access to forces (slow)
• Difficult to fit forces accurately

(e.g. planar defects)

Force-based 
ML FF

• Direct access to forces (fast)
• Based on well-defined atomic forces
• Easy to fit forces for complex structures

• Indirect access to total energy
• Noise in ML predictions

(non-zero net force)
• Difficult to access stresses / pressures

Botu et al., J. Phys. Chem. C, 121 (1), 511 (2017),   Li et al., PRL 114, 096405 (2015),   Botu et al., Phys. Rev. B, 92, 094306 (2015)

FDFT fi
ML

DFT
forces

Atomic
fingerprint

Learn atomic forces directly
Successful ML FF for Al and Si

Our method: AGNI
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STEP 1. REFERENCE DATA
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Periodic & non-periodic configurations of Al

Bulk Surface Defect & surface features Cluster
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STEP 2. AGNI FINGERPRINT
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Mathematically complete fingerprint to numerically and
uniquely represent any configuration

Output
fingerprint

Directionality Gaussian
transformation

Cut-off
function

Huan et al., npj comput. mater., 3, 27 (2017)
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STEP 3. MACHINE LEARNING
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Property Estimation: Sum of weighted Gaussians

Measure of similarity: Euclidean distance

AGNI scheme compatible with other ML methods as well

Kernel ridge regression à Measures (dis)similarity amongst data

1

2

3

4
i
di,4

di,3

di,1

di,2
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AGNI: STATIC TESTS
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ML

Geometry optimization Mechanical behavior

Botu et al., J. Phys. Chem. C, 121 (1), 511 (2017),   Botu et al., IJQC 115, 1074 (2015)



Ramprasad Research Group, Georgia Institute of Technology

AGNI: MODELING DIFFUSION
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Self-diffusion on Al (111) surface

Botu et al., Phys. Rev. B, 92, 094306 (2015)

Captures underlying dynamics accurately
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AGNI: BEYOND “TRAINING” DATA
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Learning in fingerprint space

Botu et al., J. Phys. Chem. C, 121 (1), 511 (2017)
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POWER OF ML: ACTIVE LEARNING
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Development of application “targeted” ML force field

Data Generation
(DFT)

Reference atomic 
configurations & forces Force fields (FF)

Step 1 Step 2,3 Step 4

Improved 
force field

Fingerprinting + Machine Learning
(AGNI, KRR)

Test Applications
(stacking fault, melting)

Success?

Step 5

“Failed” Data Augmentation
(New DFT computations)

No

Yes

“Failed” FF ML parameters
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ACTIVE LEARNING: STACKING FAULT
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Al

[1-12], Å

En
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2

SF

AA stacking
(“failed” region)

• Force integration to capture underlying PES
• Unable to accurately capture AA stackingSF-TS

Relatively easy retraining process

• Statistical improvement with active learning
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ACTIVE LEARNING: MELTING
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Active learning improves AGNI FFs to capture melting behavior
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AGNI: UNIVERSAL FRAMEWORK
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CuCu Cu

Huan et al., npj comput. mater., 3, 27 (2017)
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CRITICAL STEPS FORWARD
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• Use ML FF (along with active learning) in regions where 
classical potentials are know to have limitations (far from 
equilibrium)

• Extension of ML FF to multi-elemental systems ( > 2 
elements) and advanced ML methods (DNN)

• Uncertainty quantification and regions of applicability

AGNI: Available in LAMMPS

Part of USER-MISC package

pair_style agni command
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RESULTS: FORCE ACCURACY I
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High force accuracy for all elements and for all range of forces

Error throughout 
range of force
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HYPERPARAMETERS DETERMINATION
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FINGERPRINT COMPARISION
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OVERALL ERRORS
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PERFORMANCE ON MULTI-ELEMENT CASES
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Alumina

Al atom O atom
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ML FORCE FIELDS: LEARNING FORCES
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1. Static energy calculations:

2. Dynamic energy calculations:

FDFT fi
ML

DFT
forces

Atomic
fingerprint

Learn atomic forces directly
Successful FF for Al and Si

Extracting energy from forces

Botu et al., J. Phys. Chem. C, 121 (1), 511 (2017),   Li et al., PRL 114, 096405 (2015),   Botu et al., Phys. Rev. B, 92, 094306 (2015)


