Machine Learning Based Atomistic Force Fields

Rohit Batra, Huan Tran, Venkatesh Botu, James Chapman and Rampi Ramprasad

School Of Materials Science And Engineering, Georgia Institute Of Technology, GA

NIST Workshop on Atomistic Simulations for Industrial Needs Ist August, 2018

MOLECULAR DYNAMICS

Used for in silico study of several chemical and materials science phenomena

LIMITATIONS OF CLASSICAL POTENTIALS

Non-transferable

Inaccurate forces in regimes far from equilibrium

Non-generalizable

No common potential functional form across materials

Bianchini et al., Modelling Simul. Mater. Sci. Eng. 24 045012 (2016), Choudhary et al., Scientific Data, 4 (2017)

MOTIVATION

ML force fields provide balance between cost, accuracy and versatility

V. Botu, "Surface Chemistry with Machine Learning and Quantum Mechanics", Doctoral Dissertation, University of Connecticut (2016)

MACHINE LEARNING: AN EXAMPLE

What should be the credit limit ? "

Index	Feature	Value	
I	Age	23	
2	Gender	Male	
3	Salary	\$30,000	
4	Years in job	l year	
n	Current debt	\$15,000	

	X			У		
$\mu = E(\mathbf{V})$	Age	Gender		Current debt	Credit limit	
$y - \Gamma(\wedge)$	25	М		\$10,000	\$5,000	
Machine learning finds	19	F		\$50,000	\$1,000	
approximate function						
$V_{predict} = F(X_{new})$	30	М		\$20,000	?	
	25	F		\$15,000	?	

ML FORCE FIELDS: KEY CONCEPT

R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim,

Machine Learning and Materials Informatics: Recent Applications and Prospects, npj Computational Materials 3, 54 (2017)

ML FORCE FIELDS: METHODOLOGY

- I. Reference data should be exhaustive (as ML is interpolative)
- 2. Atomic Fingerprint is the key
- 3. Choose ML method based on fingerprint and amount of reference data

R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim,

Machine Learning and Materials Informatics: Recent Applications and Prospects, npj Computational Materials 3, 54 (2017)

ML FORCE FIELDS: LEARNING ENERGY

Behler, J. Chem. Phys. 145, 170901 (2016), Thompson et al., J. Comput. Phys. 285, 316 (2015), Deringer PRB 95, 094203 (2017)

Ramprasad Research Group, Georgia Institute of Technology

ML FORCE FIELDS: LEARNING FORCES

Learn atomic forces directly

Successful ML FF for AI and Si

	Pros	Cons
Energy-based ML FF	Well-understood (available codes)Momentum conserved for isolated system	 Based on ill-defined atomic energies Indirect access to forces (slow) Difficult to fit forces accurately (e.g. planar defects)
Force-based ML FF	 Direct access to forces (fast) Based on well-defined atomic forces Easy to fit forces for complex structures 	 Indirect access to total energy Noise in ML predictions (non-zero net force) Difficult to access stresses / pressures

Our method: AGNI

Botu et al., J. Phys. Chem. C, 121 (1), 511 (2017), Li et al., PRL 114, 096405 (2015), Botu et al., Phys. Rev. B, 92, 094306 (2015)

Patu at al I Dhua Cham. C. 121 (1) Ell (201

STEP I. REFERENCE DATA

Periodic & non-periodic configurations of AI

STEP 2.AGNI FINGERPRINT

Mathematically complete fingerprint to numerically and uniquely represent any configuration

Huan et al., npj comput. mater., 3, 27 (2017)

STEP 3. MACHINE LEARNING

Kernel ridge regression \rightarrow Measures (dis)similarity amongst data

AGNI scheme compatible with other ML methods as well

AGNI: STATIC TESTS

Botu et al., J. Phys. Chem. C, 121 (1), 511 (2017), Botu et al., IJQC 115, 1074 (2015)

AGNI: MODELING DIFFUSION

Captures underlying dynamics accurately

Botu et al., Phys. Rev. B, 92, 094306 (2015)

AGNI: BEYOND "TRAINING" DATA

Learning in fingerprint space

Botu et al., J. Phys. Chem. C, 121 (1), 511 (2017)

POWER OF ML: ACTIVE LEARNING

Development of application "targeted" ML force field

ACTIVE LEARNING: STACKING FAULT

- Force integration to capture underlying PES
- Unable to accurately capture AA stacking

Relatively easy retraining process

Statistical improvement with active learning

ACTIVE LEARNING: MELTING

Active learning improves AGNI FFs to capture melting behavior

AGNI: UNIVERSAL FRAMEWORK

Huan et al., npj comput. mater., 3, 27 (2017)

CRITICAL STEPS FORWARD

- Use ML FF (along with active learning) in regions where classical potentials are know to have limitations (far from equilibrium)
- Extension of ML FF to multi-elemental systems (> 2 elements) and advanced ML methods (DNN)
- Uncertainty quantification and regions of applicability

AGNI: Available in LAMMPS

pair_style agni command

Part of USER-MISC package

ACKNOWLEDGEMENTS

Past members Dr. Sridevi Krishnan

Current members

Dr. Chiho Kim, Dr. Lihua Chen and Dr. Anand Chandrasekharan

Special thanks to Dr. Blas Uberuaga and Dr. Ghanshyam Pilania (Los Almos National Lab, NM, USA)

Funding agency

Extreme Science and Engineering Discovery Environment

Backup slides

RESULTS: FORCE ACCURACY I

Ramprasad Research Group, Georgia Institute of Technology

HYPERPARAMETERS DETERMINATION

FINGERPRINT COMPARISION

OVERALL ERRORS

Table 1 obtain	• Force e	valuation e aining set s	rrors of the size $N_{\rm t} = 100$	force field 00	s develope	d,	
FF	AI	AI			Cu		
	δ_{RMS}	δ_{MAX}	δ_{STD}	δ _{RMS}	δ_{MAX}	δ_{STD}	
(I)	0.025	0.100	0.025	0.024	0.093	0.024	
(II)	0.023	0.096	0.023	0.017	0.071	0.017	
(III)	0.023	0.092	0.023	0.017	0.074	0.017	
(IV)	0.025	0.097	0.025	0.018	0.076	0.017	
(V)	0.021	0.082	0.021	0.016	0.056	0.016	
FF	Ti			W			
	δ_{RMS}	δ_{MAX}	δ_{STD}	δ _{RMS}	δ_{MAX}	δ_{STD}	
(I)	0.065	0.290	0.065	0.094	0.398	0.094	
(11)	0.054	0.306	0.054	0.063	0.268	0.063	
(III)	0.045	0.173	0.045	0.065	0.244	0.065	
(IV)	0.047	0.162	0.047	0.068	0.253	0.068	
(V)	0.035	0.149	0.034	0.049	0.200	0.049	
FF	Si			С			
	δ_{RMS}	δ_{MAX}	δ_{STD}	δ_{RMS}	δ_{MAX}	δ_{STD}	
(I)	0.081	0.296	0.081	0.161	0.778	0.161	
(11)	0.074	0.251	0.074	0.088	0.373	0.088	
(III)	0.074	0.260	0.074	0.083	0.322	0.083	
(IV)	0.074	0.263	0.074	0.087	0.339	0.087	
(V)	0.074	0.253	0.074	0.085	0.326	0.085	
For each material, three error measures, i.e., $\delta_{RMS'}$, $\delta_{MAX'}$, and δ_{STD} are reported in eV/Å for (I), (II), (III), (IV), and (V), five recipes of force field creation (described in the text)							

PERFORMANCE ON MULTI-ELEMENT CASES

ML FORCE FIELDS: LEARNING FORCES

Learn atomic forces directly

Successful FF for AI and Si

I. Static energy calculations:

2. Dynamic energy calculations:

Botu et al., J. Phys. Chem. C, 121 (1), 511 (2017), Li et al., PRL 114, 096405 (2015), Botu et al., Phys. Rev. B, 92, 094306 (2015)

$E = E_o - \sum F_i^u \Delta r_i^u, \ u \in (x, y, z)$ $E_t = E_{t-\Delta t} - \Delta t \left(\sum F_i^u v_i^u\right)$

i,u

