

MEAM Interatomic Potential Generation: Coupling with MATLAB

M.A. Tschopp¹, M.I. Baskes², M.F. Horstemeyer¹, K. Solanki¹

Collaborators: F. Gao³, X. Sun³, M. Khaleel³

 ¹Center for Advanced Vehicular Systems (CAVS), Mississippi State University
² Los Alamos National Laboratory
³ Pacific Northwest National Laboratory

"On the topic of *Baskes-less* MEAM Interatomic Potential Development" **

M.A. Tschopp¹, M.I. Baskes², M.F. Horstemeyer¹, K. Solanki¹

Collaborators: F. Gao³, X. Sun³, M. Khaleel³

 ¹Center for Advanced Vehicular Systems (CAVS), Mississippi State University
² Los Alamos National Laboratory
³ Pacific Northwest National Laboratory

** PROCEEDINGS THE ROYAL MATHEMATICAL, OF SOCIETY A MATHEMATICAL, & ENGINEERING SCIENCES

In preparation (2010) ©

Outline

- Introduction
 - CAVS/Cyber-infrastructure/Motivation
- MATLAB Coupling with Atomistic Codes
- Fe-He MEAM Interatomic Potential
- Interatomic Potential Optimization Technique
- Monte Carlo Search
- Conclusions

CAVS: Multiscale Models of Mechanical Behavior

CAVS - MEAM Interatomic Potential Development

- Aluminum
 - Al-Mg, Al-Si, Al-Cu, Al-Fe, etc.
- Magnesium
 - Mg-Al, etc.
- Steel
 - Fe-V, Fe-C, etc.
- Nuclear Applications
- Polymer/composites

New research areas

1	2											3	4	5	6	7	0
							н										He
Li	Be							f.				В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Ρ	s	CI	Ar
к	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ТΙ	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
_								_									
Alkali metals Halogens Transition metals Noble gases																	

Still needs some work...

- Needs to be efficient!!!
- Optimization techniques what methodology works best?
- Ease of transferability to new potentials
- Addition of new response variables (e.g., stacking fault energy)

Dislocation mobilities for Al multiscale models Groh, Marin, Horstemeyer, Zbib, IJP (2009)

MATLAB Coupling w/ External Atomistic Codes

MATLAB-LAMMPS Tutorial

How do we generate the energy per atom for 10 different EAM potentials as a function of lattice constant? How do we do it quickly?

MEAM Interatomic Potential Development One-At-a-Time Optimization

MEAM = Modified Embedded Atom Method^[1,2] 📣 Experimental/DF... 💶 🗵 🗙 tet vi Bulk Modulus, B: -Select File to Open 🚺 Inputs for meafile 💶 🗙 ધ 35.2 -_ 🗆 × Look in: 🔁 Mg single Select an element C₁₁: rout value: 5 59.3 MATLAB_plots_1 Hx Select parameter: MATLAB_plots_2 Hz C_33 cmin111: My Recen MATLAB_plots_3 alpha ۰ lico. Documents MgSFridayGood res b. b0 ICO1 61.5 b1 Unstable R b2 cmax111: ZnS results °.i lr1 b3 Desktop ZnS_results.rev1 2.8 K. Default values - 🗆 🗵 16.4 alat 111.atm Kf. lesub 🗐 111.i repuls11: Li C_w; asub Default minimum value: 🕑 111.r Lif t1 0.75 My Documents 16.8 1111.surface.atm Mg t2 = 464.i MgS deltas11: t3 AE teo-bee Default maximum value: 700s.i MaS1 cmin111 h 1.25 🗐 1500l.i 0.031 cmax111 Mo. My Computer 🗐 1500s.i Mo1 attrac11: AE hop-tec Default number of increments: Mo2 4 10 0.026 MoL File name: My Network Mof OK. Vacancy Formation Energy, E OK. Places Cancel Mol All Files of type: 0.82 Mon Mox Ŧ Ŧ Lattice Parameter, a: elect all 3.203 c/a ratio to c/a _{ideal} ancel 0.994 Input experimental/DFT values... ΟK Cancel [1] Baskes, PhysRevB (1992)

[1] Baskes, Physiceve (1992) [2] Baskes, Johnson, MSMSE (1994)

MEAM Interatomic Potential Development One-At-a-Time Optimization

MEAM Interatomic Potential Development Optimization Technique: Application to Fe-He

MEAM Interatomic Potential Development Methodology

Single element MEAM parameters

Parameter	Fe	He
alpha	5.027	8.350
alat	2.851	4.100
esub	4.280	0.032
asub	0.555	1
attrac/repuls11	0.150	0
rozero	1	0.450
Cmin111	0.8	2.0
Cmax111	1.9	2.8
b0	3.5	6.06
b1	2	6.06
b2	1	6.06
b3	1	6.06
tO	1	1
t1	-1.6	0
t2	12.5	0
t3	-1.4	0

Fe-He interaction MEAM parameters

Parameter	Fe-He
rcut	4
rho2	0.34
alpha12	3.0
attrac/repuls12	0.10
delta12	1.14
Cmin112	2.0
Cmin121	2.0
Cmin122	2.0
Cmin211	2.0
Cmin212	2.0
Cmin221	2.0
Cmax112	2.8
Cmax121	2.8
Cmax122	2.8
Cmax211	2.8
Cmax212	2.8
Cmax221	2.8

EAM

Fe-He response variables

INPUT

Single element MEAM parameters

Parameter	Fe	He
alpha	5.027	8.350
alat	2.851	4.100
esub	4.280	0.032
asub	0.555	1
attrac/repuls11	0.150	0
rozero	1	0.450
Cmin111	0.8	2.0
Cmax111	1.9	2.8
b0	3.5	6.06
b1	2	6.06
b2	1	6.06
b3	1	6.06
t0	1	1
t1	-1.6	0
t2	12.5	0
t3	-1.4	0

EAM

Fe-He interaction MEAM parameters

Parameter	Low	High	
rcut	4	5	
rho2	0.31	0.37	
alpha12	2.7	3.3	
attrac/repuls12	0.05	0.15	
delta12	1.03	1.25	
Cmin112	1.6	2.4	ĺ
Cmin121	1.6	2.4	
Cmin122	1.6	2.4	
Cmin211	1.6	2.4	
Cmin212	1.6	2.4	
Cmin221	1.6	2.4	
Cmax112	2.6	3	
Cmax121	2.6	3	
Cmax122	2.6	3	
Cmax211	2.6	3	
Cmax212	2.6	3	
Cmax221	2.6	3	

Can multiobjective crash optimization framework for side and roof impacts help?

OUTPUT

Acar, Solanki, Struct Multidisc Optim 39 (2009) 311.

MEAM Interatomic Potential Development Latin Hypercube Sampling

What is the most efficient way to sample n-dimensional parameter space?

LHS design

• Options - Reduce correlation or Maximize minimum distance

• Less evaluations needed!

Now expand to *n*-dimensional space for each variable, generate LHS for x values of each variable (~2000+ here), and evaluate response variables

MEAM Interatomic Potential Development Response Surface Fitting

Response Surface Methodology

 $R^2 > 0.95$

Response: 1	r2: 0.927, Response: 2	r2: 0.986
Response: 3	r2: 0.997, Response: 4	r2: 0.995
Response: 5	r2: 0.965, Response: 6	r2: 0.997

MEAM Interatomic Potential Development Constrained Nonlinear Optimization

$$F(x) = \sum_{i=1}^{p} W_i (f_i(x) - g_i(x))^2$$

Min $F(x)$, such that
 $x_k^{lower} \le x_k \le x_k^{upper}$ for $k = 1, NDV$
 $\sum_{i=1}^{p} W_i = 1, W_i > 0$

	E _{sub} (eV)	E _{tetra} (eV)	E _{octa} (eV)
W _i	1/3	1/3	1/3
VASP	4.00	4.37	4.60
RSM	4.00	4.37	4.60
DYNAMO	3.96	4.43	4.61

Success? ...

	E _{sub} (eV)	E _{tetra} (eV)	E _{octa} (eV)	E _{He2V} (eV)	E _{He2} (eV)	E _{He3V} (eV)	
W _i	1/6	1/6	1/6	1/6	1/6	1/6	
VASP	4.00	4.37	4.60	6.61	8.79	9.28	
RSM	4.00	4.37	4.60	6.61	8.79	9.28	
DYNAMO	4.00	4.43	4.63	7.31	8.37	8.47	\mathcal{I}

Ran for 100+ starting points, always biased

similarly!

Advantage of doing optimization on response surface!!! R²>0.96, but metamodel isn't accurately capturing DYNAMO response

MEAM Interatomic Potential Development Monte Carlo (Random) Search...

	E _{sub} (eV)	E _{tetra} (eV)	E _{octa} (eV)	E _{He2V} (eV)	E _{He2} (eV)	E _{He3V} (eV)
W _i	1/6	1/6	1/6	1/6	1/6	1/6
VASP	4.00	4.37	4.60	6.61	8.79	9.28
DYNAMO	4.00	4.63	4.83	6.32	8.65	9.48

Iterative refinement of bounds...?

Feed into simplex optimization technique now...?

- MATLAB can be a powerful tool for coupling atomistic codes with optimization methods for interatomic potential development
- How do we optimize interatomic potentials efficiently?
 - Parameter screening which parameters are important for response surfaces?
 - What are the appropriate metamodels for each response variable?

Questions/Discussion?