# Role of precipitates in commercial Al and Mg alloys

#### **Bita Ghaffari**

#### **Research and Advanced Engineering**

Ford Motor Company



### Outline

- Automotive interest in materials modeling
  - Cost- and time-effective
  - Fuel economy  $\rightarrow$  Lightweight AI and Mg alloys
- Precipitates

Yield strength, ductility, thermal fatigue behavior

- From atomistic simulations to macro materials properties
  Integrated Computational Materials Engineering (ICME)
- Example: Mg-AI alloys & Mg<sub>17</sub>AI<sub>12</sub> precipitates
  - Interfacial energy
  - Elastic properties



Research and Advanced Engineering

#### Simulations of cast Al alloys

#### Virtual Al Castings suite of programs

- Powertrain
- Improve time to market
- Improve quality
- Reduce cost

Initial





### Wrought & cast alloys



#### Al alloys

- AI 5xxx and 6xxx series body applications Stamped and paint-baked
- Extrusions

2004 aluminum-bodied Jaguar XJ

#### Mg Alloys – Virtual Mg Casting programs

- Lightweight body structures
- Replacing some AI with Mg
- Mg extrusions

Cost

- "Inferior" properties compared to steel
- Alloying technology & manufacturing not as mature



#### 2010 Lincoln MKT liftgate

### Strengthening precipitate orientations

## $\begin{array}{c} \textbf{AI-Cu} \; (2xxx, \; 3xx) \\ \theta'\textbf{-Al}_2\textbf{Cu} \end{array}$



Ford Motor Co.



Ford phase-field prediction Courtesy: Mei Li, Ford Motor Co.

#### Al-Mg-Si (6xxx) β"-Mg<sub>5</sub>Si<sub>6</sub>



Tsao, Scripta Mater., 2005, 53, 1241.



Ford phase-field prediction Courtesy: Mei Li, Ford Motor Co.

# $\begin{array}{c} \textbf{Mg-AI-Zn} \; (\text{AZ91}) \\ \beta \textbf{-Mg}_{17} \textbf{AI}_{12} \end{array}$



Celotto, Acta Mater., 2000, 48, 1775.



Mg HCP Basal Planes



### Integrated Comput. Materials Engineering





### Atomistic simulations in Mg alloys

#### Mg ICME:

- High-strength Mg alloys Mg-AI alloys
- Strengthened by platelet  $\beta\text{-Mg}_{17}\text{Al}_{12}$  precipitates in Mg matrix



itchinson, Metall. & Mat. Trans. 36A (2005) 2093.

- Optimize growth of β precipitates (phase-field model) interface energies, strain energies, lattice parameters & elastic constants
- Promote growth of precipitates in **non**-basal planes (with Prof. Chris Wolverton, Northwestern University)



### AZ91 alloy – Input for phase-field model

- Crystal structure:
  - β-Mg<sub>17</sub>Al<sub>12</sub>: BCC, *I43m* a=1.056 nm 58 atoms



• Habit planes and orientation relationships:





• <u>Coherency?</u> ... misfit dislocations?:

Periodic strain contrast: semi-coh interface, punctuated by dislocations





Hutchinson et al., Metall. Mat. Trans., 36A (2005).



### Conclusions

- Great automotive interest in materials modeling
  - Cast and wrought
  - Al, Mg, ... steel
- Precipitates
  - Interface energy, elastic energy, ...
- Atomistic simulations are needed
  - Integrated Computational Materials Engineering
  - Phase-field model
    - Gibbs Energy
    - Diffusion constant



2010 Lincoln MKT liftgate



Research and Advanced Engineering