Welcome to the

NIST Workshop on Atomistic Simulations for Industrial Needs

July 27-28, 2010

Introduction

- Atomic-scale simulations are increasingly common
 - insight into nanoscale phenomena (e.g. catalysis, defects and segregation, ordering in solids and liquids, ...)
 - input for higher-level models (e.g. FEA, phase-field, or Calphad)
- Fits into the ICME paradigm:
 - NRC report: "Integrated Computational Materials Engineering:
 A Transformational Discipline for Improved Competitiveness and
 National Security," 2008.
- These methods can ultimately reduce costs -- faster R&D cycles, fewer expensive / difficult / impossible experiments.

- BUT, there are still many issues to address, including
 - accuracy, software availability and standardization, transferability, system sizes, methods, the number of components and phases, data,

NIST Interatomic Potentials Project overview

- NIST-sponsored workshops to facilitate interactions between industrial and academic researchers, identify and address specific topics.
- Public repository of interatomic potentials (models of interactions between atoms) from known sources with references.
 - Not to declare "The Best" since that depends on application
 - work with developers to make files available
 - no particular formats are required, but documentation is
- Conversions between file formats
- Standardization efforts (formats, automated property evaluations) with KIM collaboration
- Property comparisons with experiment and/or first-principles
 - e.g., C.A. Becker and M. J. Kramer, "Atomistic comparison of volume-dependent melt properties from four models of aluminum," MSMSE, in press (2010).

Available potentials

- www.ctcms.nist.gov/potentials/
- Approximately 75 element and alloy potentials are available for download.
- Most are compatible with readily-available molecular simulation packages such as LAMMPS and iMD.
- Approved by submitters, but ...
- It is the user's responsibility to ensure the potentials give expected results.

Elements	Multi-co	mponent		
Ag	Ag-Cu			
Al	Al-Cu	Al-Fe	Al-Mg	
	Al-Ni	Al-Ti		
Au				
	C-Fe			
	C-H-O			
Cs				
Cu	Cu-Ag	Cu-Al	Cu-Fe	
		Cu-Pb	Cu-Ta	
	Cu-Zr			
Fe		Fe-C		
		Fe-Ni	Fe-P	
	Fe-V			
K				
Li				
Mg	Mg-Al			
Мо				
Na				
Nb				
Ni	Ni-Al	Ni-Al-H	Ni-Cu	
	Ni-Fe			
	P-Fe			
	Pb-Cu			
Pd				
Pt				
Rb				
Ru				
Si				
Ta	Ta-Cu			
Ti	Ti-Al			
V	V-Fe			
W				
Zr	Zr-Cu			
Fictional				-

Potentials Download Pages

Center for Theoretical and Computational Materials Science

Project Home

- References
- FAQ
- Credits
- Privacy / Security / Accessibility

Working Group

 Chandler Becker

File /
Format

Interatomic Potentials Repository

A ← Element or alloy

M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta, "Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu," Phil. Mag. 88, 1723-1750 (2008). DOI: 10.1080/14786430802206482.

Format	File	Notes	Cubmitton
EAM/FS setfl	Al1.eam.fs	These files were provided by Mikhail Mendelev.	Submitter

X.-Y. Liu, F. Ercolessi, and J.B. Adams, "Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy," Modelling Simul. Mater. Sci. Eng. 12, 665-670 (2004). DOI: 10.1088/0965-0393/12/4/007.

Format	File	Notes
EAM	NEWAI.txt	NEWAI.txt was obtained from
EAM setfl	, , , , , , , , , , , , , , , , , , , ,	http://enpub.fulton.asu.edu/cms/potentials/main/main.htm and posted with the permission of J.B. Adams. Al-LEA.eam.alloy is a version of the same potential which has been formatted for use in LAMMPS ("D" was replaced by "e", "FCC" by "fcc", and "Al" was added on line 3).

Additional Notes

Reference

R.R. Zope and Y. Mishin, "Interatomic potentials for atomistic simulations of the Ti-Al system," Phys. Rev. B 68, 024102 (2003). DOI: 10.1103/PhysRevB.68.024102.

Format	File	Notes
EAM/alloy setfl	Al03.eam.alloy	This conversion was produced by Chandler Becker on 4 February 2009 from the plt files listed below. This version is compatible with LAMMPS. Validation and usage information can be found in Al03_releaseNotes_1.pdf. If you use this setfl file, please credit the website in addition to the original reference.
EAM table	F(ρ): F_al.plt	These files were provided by Yuri Mishin.
	ρ(r): fal.plt	
	φ(r): pal.plt	

Link to Download

Repository Usage

- ▶ Per month: ~ 3400 content pages to ~500 hosts
- 2010 TMS tutorial on "Nanoscale Computational Materials Science"
- Word of mouth: Professors sending students, mailing lists

No bots, web crawlers, or nist.gov. Requests for style sheets and images are also ignored. All of these artificially inflate hit counts.

2010 Workshop Questions

- What can we do to make atomistic simulations more accepted as an industrial tool?
- Which interatomic potentials are available? Which are most needed?
- Can we create standards for software interoperability (e.g. MD + first-principles, MD + FEA)? What would they look like?
- Common formats for interatomic potentials? What would they look like?
- Are there mechanisms for "pairing" what experiments are being done with those that would be useful for validating potentials?
- Other topics for discussion?

Agenda (Tuesday)

Tuesday, July 27, 2010

08:30 AM	Clear security and the front gate	
09:00 AM	Introduction and Welcome	
09:30 AM	Robust Quantum-Based Interatomic Potentials for Transition Metals	John Moriarty, LLNL
10:00 AM	Limitations of Atomic Modeling for Nanomaterial Applications	Sadasivan Shankar, Intel
10:30 AM	Discussion / break	
11:00 AM	Development and applications of ReaxFF reactive force fields for combustion, catalysis and material failure	Adri Van Duin, Penn. State U.
11:30 AM	Applications of ReaxFF reactive force fields in hydrogen storage	Julius Ojwang, CIW
12:00 PM	lunch (NIST cafeteria)	
01:30 PM	Interatomic potentials for complex systems: recent development	Yuri Mishin, George Mason U.
02:00 PM	Ideas from Multi-state MEAM Applied to the Pu-Ga System	Mike Baskes, LANL
02:30 PM	Molecular dynamics simulations of multicomponent oxide glasses	Jincheng Du, U. North Texas
03:00 PM	Discussion / break	
03:30 PM	Integrating atomic potentials across the interfaces	Yue Qi, GM
04:00 PM	MEAM Interatomic Potential Generation: Coupling MATLAB with Atomistic Codes	Mark Tschopp, MS State U.
04:30 PM	Discussion and daily wrap-up	
07:00 PM	Dinner at The Fontina Grille	
	801 Pleasant Drive, Rockville, MD 20850 301-947-5400	

Agenda (Wednesday)

Wednesday, July 28, 2010

09:00 AM	Forcefield parameter determination in and from atomistic scale for non-covalent interactions	Jian-jie Liang, Accelrys
09:30 AM	A comprehensive environment for property prediction and forcefield development	Hannes Schweiger, Materials Design
10:00 AM	Open Knowledgebase of Interatomic Models (OpenKIM.org): an online platform for testing and archiving empirical potentials.	Ellad Tadmor, U. Minnesota
10:30 AM	Towards an API standard for the Knowledgebase of Interatomic Models (KIM)	Valeriu Smiricinschi, U. Minnesota
11:00 AM	Discussion	
12:00 PM	lunch (NIST cafeteria)	
01:00 PM	Role of precipitates in commercial Al and Mg alloys	Bita Ghaffari, Ford
01:30 PM	Development of Interatomic Potentials Appropriate for Simulation of Solid-Liquid Interface Properties in Al-Mg Alloys	Mikhail Mendelev, Ames Nat. Lab.
02:00 PM	Role of Sr in the Atomic Structure of Liquid Al-Si Hypoeutectic Alloys Using High Energy X-Ray Diffraction	Matthew Kramer, Ames Nat. Lab
02:30 PM		Howard Sheng,
	Finding long-range orientational order in a metallic glass	George Mason U.
03:00 PM	Discussion and workshop wrap-up	

Items of interest

- TMS First World Congress on Integrated Computational Materials Engineering
 - July 10-14, 2011; abstracts due 11/1/2010
- Virtual Vault for Pseudopotentials
 - Derek Stewart, Cornell Nanoscale Facility
 - http://www.nnin.org/nnin_comp_psp_vault.html

