IDEAS FROM MULTI-STATE MEAM APPLIED TO THE Pu-Ga SYSTEM

M. I. Baskes Los Alamos National Laboratory and University of California, San Diego

Operated by Los Alamos National Security, LLC for NNSA

OUTLINE

- Modified EAM (MEAM)
- Multi-State MEAM
- Application to the Pu-Ga System

LANS Company Sensitive — unauthorized release or dissemination prohibited

WE ARE ALL FAMILIAR WITH THE EMBEDDED ATOM METHOD FORMALISM

Operated by Los Alamos National Security, LLC for NNSA

CSD Jacobs School of Engineering

COMPLEX MATERIALS REQUIRE THE ADDITION OF ANGULAR FORCES

- EAM uses a linear superposition of spherically averaged electron densities
- MEAM allows the background electron density to depend on the local symmetry

Operated by Los Alamos National Security, LLC for NNSA

MEAM USES A LINEAR COMBINATION OF WEIGHTED SQUARES OF PARTIAL ELECTRON DENSITIES

$$\overline{\rho} = \rho^0 \sqrt{1 + \Gamma}$$

$$\Gamma = \sum_{l=1}^{3} \overline{t}^l \left(\rho^l / \rho^0 \right)^2$$

$$\left(\rho^l \right)^2 = \sum_{i} \rho^{al} \left(R_{ik} \right) \sum_{j} \rho^{al} \left(R_{kj} \right) P_l^0 \left(\cos\left(\theta_{ikj}\right) \right)$$

For alloys, the weighting factors are taken as a function of the local environment and the atomic weighting factors

Operated by Los Alamos National Security, LLC for NNSA

WE DEVELOPED MS-MEAM AND APPLIED IT TO Cu

- First Principles data base (VASP)
- Almost identical formalism to MEAM
- Almost no ad-hoc functions

M.I. Baskes, et al., PHYSICAL REVIEW B 75, 094113 2007

LANS Company Sensitive — unauthorized release or dissemination prohibited

MS-MEAM/MEAM FORMALISM COMPARED

$$\mathbf{MS} - \mathbf{MEAM}$$
$$\overline{\rho}_i^2 = \left(\rho_i^0\right)^2 + \sum_{l=1}^3 \left[\left(\rho_i^{l+}\right)^2 - \left(\rho_i^{l-}\right)^2 \right]$$

MEAM

$$\overline{\rho}_i^2 = \left(\rho_i^0\right)^2 + \sum_{l=1}^3 \left[\overline{t}^l \left(\rho_i^l\right)^2\right]$$

+ ad-hoc equation for \overline{t}

Operated by Los Alamos National Security, LLC for NNSA

WE NOW PARAMETERIZE THE ATOMIC ELECTRON DENSITIES

 $\rho_{\alpha}^{al\pm}(R) = \rho_{0\alpha}^{a} a_{\alpha}^{\prime\pm} \exp\left[-\beta_{\alpha}^{\prime\pm}\left(\frac{R}{R_{0\alpha}}-1\right)\right] \qquad \rho_{\alpha}^{al}(R) = \rho_{0}^{a} \exp\left[-\beta_{\alpha}^{\prime}\left(\frac{R}{R_{0\alpha}}-1\right)\right]$

MEAM

where we can relate the a's and β 's in MS-MEAM to the t's and β 's in MEAM

$$\begin{aligned} a_{\alpha}^{l+} &= \sqrt{t_{\alpha}^{l}}, \quad \beta_{\alpha}^{l+} &= \beta_{\alpha}^{l} \\ a_{\alpha}^{l-} &= \sqrt{-t_{\alpha}^{l}}, \quad \beta_{\alpha}^{l-} &= \beta_{\alpha}^{l} \end{aligned} \right\} t_{\alpha}^{l} > 0 \\ t_{\alpha}^{l} < 0 \end{aligned}$$

Operated by Los Alamos National Security, LLC for NNSA

MS-MEAM

LANS Company Sensitive — unauthorized release or dissemination prohibited

School of

Engineering

₹UCSD

Jacobs

MEAM FOR Pu WAS GENERALLY SUCCESSFUL – BUT SOME PROBLEMS APPEARED

- Properties reproduced
 - complex crystal structures
 - $\geq \alpha$ (monoclinic) stable at RT
 - unusual volume behavior
 - $\geq \delta$ (fcc) has largest volume/atom
- Problems
 - at 0K hcp required to be more stable than fcc (in contradiction with recent first principles calculations)
 - large partial dislocation separation predicted (in conflict with TEM in alloys)

Operated by Los Alamos National Security, LLC for NNSA

Engineering

Jacobs

CHANGE TO MS-MEAM FORMALISM APPEARS TO BE SUCCESSFUL

• All MEAM parameters (or equivalent) retained except:

MEAM

MS-MEAM

$$\beta_{Pu}^{3} = 9; t_{Pu}^{3} = -0.8 \qquad \qquad \beta_{Pu}^{3+} = 0.9; a_{Pu}^{3+} = 3.5$$
$$\beta_{Pu}^{3-} = 7; a_{Pu}^{3-} = 1.54$$

Operated by Los Alamos National Security, LLC for NNSA

LANS Company Sensitive — unauthorized release or dissemination prohibited

RESULTANT CHANGE IN f-PARTIAL ELECTRON DENSITY

Operated by Los Alamos National Security, LLC for NNSA

LANS Company Sensitive — unauthorized release or dissemination prohibited

PREDICTED VOLUMES MIRROR EXPERIMENT

- δ predicted to have largest volume/atom
- volume decrease upon melting
- γ volume predicted higher than experiment

Operated by Los Alamos National Security, LLC for NNSA

PREDICTED PHASE STABILITY IN GOOD AGREEMENT WITH EXPERIMENTAL PHASE DIAGRAM

- Ordering of phases is correct except for β and γ
- Free energies determine phase boundaries

Operated by Los Alamos National Security, LLC for NNSA

REASONABLE DEFECT ENERGIES NOW FOUND FOR $\boldsymbol{\delta}$

MS-MEAM F.P.

Stacking fault energy158 mJ/m²(111) surface energy412 mJ/m²Vacancy formation energy1.28 eVhcp-fcc energy difference0.04 eV/atom0.07-0.13

Operated by Los Alamos National Security, LLC for NNSA

MEAM PARAMETERS RETAINED FOR Ga AND Pu-Ga

UCSD **School of** Jacobs Engineering

Operated by Los Alamos National Security, LLC for NNSA

EST.1943

CONCLUSION

As suggested by MS-MEAM, including both positive and negative f-partial electron densities for Pu leads to a more physical model for the Pu-Ga system

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED LANS Company Sensitive — unauthorized release or dissemination prohibited

MS-MEAM IS PREDICTIVE FOR ENERGY vs. NN DISTANCE

Operated by Los Alamos National Security, LLC for NNSA

TRANSFORMATIONS ARE A SERIOUS TEST OF TRANSFERABILITY

Operated by Los Alamos National Security, LLC for NNSA

WE LEARNED THE PARTIAL **ELECTRON DENSITIES CHANGED** SIGN

- In contradiction with **MEAM formalism**
- **Slightly new** formalism required

M.I. Baskes, et al., PHYSICAL REVIEW B 75, 094113 2007

Operated by Los Alamos National Security, LLC for NNSA

Los Alamos

NATIONAL LABORATOR

EST. 1943

Pu HAS SEVEN STABLE PHASES

Operated by Los Alamos National Security, LLC for NNSA

NATIONAL LABORATORY

EST.1943

UNCLASSIFIED LANS Company Sensitive — unauthorized release or dissemination prohibited

Engineering

Jacobs

PREDICTED STABILITY OF Pu-Ga ALLOYS AGREES WITH EXPERIMENT

Operated by Los Alamos National Security, LLC for NNSA

