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MEDEA SOFTWARE PLATFORM 
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Purpose 

4 

Approaches: 

Ab initio electronic structure calculations 

Forcefield simulations 

Statistical mechanics 

Analytical theory 

Empirical correlations 

Experimental data of existing materials 

(databases) as reference 

 

Predict and understand materials properties  

 



Materials modeling: MedeA capabilities 

Device 
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Properties 
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User Interface 

Local or remote 

Model creation 

and analysis of results 

 
Local databases  

(expt. and computed) 

Job control and 

job databases 

Task Servers 
Computations 
VASP  GIBBS  LAMMPS MOPAC 

Integration with 

Queuing System: PBS, LSF, … 

Job Server 



PROPERTIES 
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Forcefield Methods in MedeA 

• Focus on materials properties including: 
– Density and structure 

– Vapor pressure 

– Solubility/miscibility 

– Liquid-vapor phase diagrams, critical points 

– Thermal conductivity 

– Viscosity 

– Mechanical properties 

– Diffusion 

• Selection, editing, and control  

of forcefields  

• Automated atom-typing and  

forcefield assignment 

• Flow-chart control of computational stages 

• Full use of parallel architectures 

• Property-oriented analysis tools 

• Estimation of (statistical) error bars 
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Forcefield Control 

 

• Automated atom type assignment using the templates section of 

Materials Design’s forcefield file *.frc 

• Wildcards: major simplification in the angle and torsion terms – 

critical for more complex simulations with GIBBS and LAMMPS 

• Atom type equivalences for nonbonds, bonds, angles, torsions, etc. 

• Versioning: each parameter has its own version, so updates do not 

remove older parameters but override them 

• “Include” capability: a user can modify a forcefield by including the 

original, adding parameters and, by using version numbers, override 

parameters in the original in a well organized and controlled manner 

 



Classes of Materials 

• Gases and liquids including high pressure 

and temperature 

• Organic materials ranging from small 

molecules to polymers 

• Inorganic materials (e.g. crystalline, 

amorphous materials, glasses, molten 

materials) 

• Semiconductor materials (Si, Ge, III-V, ...) 

• Metals and alloys 

• Nanostructures 

• Interfaces 



Computed Materials Properties 

    

     Structural properties 

• Molecular structures 

• Crystal structures 

• Surface structures 

• Structure around defects  

• Adsorption geometries 

• Structures of interfaces 

• Liquids and amorphous systems 

 

 Thermo-Mechanical properties 

• Elastic moduli 

• Speed of sound 

• Vibrational properties  

• Thermal expansion coefficients 

• Fracture 

 

 Thermodynamic properties  

• DU, DH, DS, DG, heat capacity  

• Binding energies 

• Solubility 

• Melting temperature 

• Vapor pressure 

• Miscibility  

• Phase diagrams  

• Surface tension 

 
 

 

 

 

 

   

Chemical properties  

• Chemical reaction rates in gases and condensed phases 

• Reactivity on surfaces 

• Solid-solid reactions 

• Pressure-induced reactions 

• Photochemical reactions 
 

  Transport properties 

•  Mass diffusion coefficient  

•  Permeability 

•  Thermal conductivity  

•  Viscosity 

 

  Electronic, optical, and magnetic properties  
• Electron density distribution - electrical moments 

• Polarizabilities, hyperpolarizabilities 

• Optical spectra 

• Dielectric properties 

• Piezoelectric properties 

• Electrostatic potential 

• Spin density distribution, magnetic moments 

• Energy band structure - metal, semiconductor, insulator, 

superconductor 

• Band gaps, band offsets at hetero-junctions 

• Ionization energies and electron affinities 

• Work function 
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EXAMPLES 
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Carbon Dioxide 

• Vapor pressure 

• Density gas-liquid 

• Ethane-CO2 azeotrope 

• CO2-SO2 phase diagram 

(Lachet et al., 2009) 

• Viscosity 

• Thermal conductivity 

 

 

Gibbs ensemble Monte Carlo 
Biased configurational averages 

 

 

 

 

 

 

 

LAMMPS 
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Results for CO
2 
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Vapor pressure Density of liquid and gas phase 
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Ethane-CO
2
 Azeotrope 
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C2H6 – CO2 

 
Standard GIBBS AUA potentials 

 
Computed concentration of CO2 

of azeotrope at 34 bar: 

[CO2]=0.64 
boiling point of -0.6 ºC 

 
Experiment  (Nordstad et al.):  
[CO2]=0.7    

boiling point of -6 ºC 
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CO
2
  SO

2
 Phase Diagram 
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Thermal Conductivity 

17 

CO2 

P = 500 bar 

V = 2.89 x 2.89 x 8.68 nm3 

T = 298.2 K 

r = 1.0341 g/cm3 

5 ns molecular dynamics 

lcomp = 0.141 ± 0.017 W m-1 K-1 

lexpt.  = 0.1385 W m-1 K-1 

 

 

Reverse non-equilibrium molecular dynamics 

MedeA-LAMMPS 

COMPASS forcefield 

cold hot cold 



Viscosity 
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CO2 

P = 494 bar 

V = 2.89 x 2.89 x 8.68 nm3 

T = 298.2 K 

r = 1.0341 g/cm3 

0.1 ns molecular dynamics 

hcomp = 1.360 x 10-4 Pa s 

hexpt.  = 1.3466 x 10-4 Pa s  (NIST) 

 

 

 

 Reverse non-equilibrium molecular dynamics 

MedeA-LAMMPS 

COMPASS forcefield 



INTRINSIC ISSUES WITH 

CALCULATIONS 
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Forcefield Accuracy 

Alkanes and Alcohols 

Liquid 
Temperature Density  

(expt) 

Density 
LAMMPS/OPLSAA 

Error 

  (K) (g/cm3) (g/cm3)   

Butane 273 0.6013 0.6010 ± .0026 -0.05% 

Isobutane 273.2 0.58052 0.6046 ± .0039 4.15% 

Isobutane 298.2 0.55059 0.5709 ± .0056 3.69% 

Pentane 298.2 0.62074 0.6156 ± .0032 -0.83% 

Isopentane 298.2 0.61516 0.6261 ± .0032 1.78% 

Neopentane 298.2 0.58435 0.6276 ± .0036 7.41% 

Methanol 298.2 0.786  0.7797 ± .0021 -0.80% 

Ethanol 298.2 0.78509  0.7955 ± .0021 1.30% 

Isopropanol 300 0.7795  0.8088 ± .0036 3.76% 

1,2-butanediol 373.2 0.9394  0.9591 ± .0037 2.10% 

Glycerol 373.2 1.209 1.1893 -1.60% 
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Analyzing the Results 
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Which ARE the Right Results? 

Decane at 480 K and 178 atm 
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SHAKEn? COMPASS OPLS 

No 0.19 0.17 

Yes 0.16 0.13 

(experiment) 0.10015 W/m.K 

SHAKEing C-H bonds and H-C-H. 

 

Even at 480 K C-H stretch and the H-C-H and C-C-H bends will 

not be active. What about C-C-C? 

 
How does this affect calculated thermal conductivity? 



CHALLENGES FOR INDUSTRIAL 

R&D 
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Challenges for Industrial R&D 

– Immediate Proof of Concept 
• Can we calculate “x” for “y”? 

– Very short timeframe – hours or perhaps a day or two 

– What – exactly –  is “y” in terms of an atomic model? 

– Need to answer “What is the accuracy of the result?” 

• Wide range of properties and systems – no one tool fits all 

– Projects 
• Tight schedules 

• Aren’t simple, by definition! 

• Usually require a large number of calculations – 100’s 

• One of many simultaneous projects 

– Proprietary 
• Not easy to find related work without revealing topic 

• How to get help with problems with a specific system? 
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Challenges of Industrial Environment 

• Lack of control over computing resources 
– Shared resources 

– IT restrictions 
• Type of hardware 
• Network access 

• Security 
• Changing passwords monthly 

• Software Environment 
– Must be robust, robust, robust! 

– Handling of a large number (>10,000/yr) of a wide range of 
calculations  

– Well automated, including analysis 

– Checking for errors 

– Providing a history 

– Error bars 
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As Anne Chaka of NIST comments: “We give away the data for free – but we charge for the error bars!” 



From code to property 

• Programmer’s Mind 

– #kpoints 

– Optimize program 

• Platform specific 

• Special cases: 

– Non-magnetic 

–  Independent blocks 

– Block/group per node 

– Expert in code 

– Full Focus 

 

• Engineers Mind 

– Similar k-spacing 

– General approach 

• Platform independent 

• Keep procedure 

– Change molecule 

– Change process property 

– Use more computing power 

– Expert  

– One of many tools 
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ASSESSMENT 
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Assessment 

• Computer simulations have become a viable source of many 

industrially important thermodynamic property data providing 

– Consistent and complete dataset 

– Resolution of conflicting experimental data 

– Extrapolation to regions where experiments are too difficult, costly, time 

consuming, or dangerous 

– Understanding on deep level 

• We are still in an early stage; accuracy and cost-efficiency will 

accelerate deployment 

• The key bottleneck is “cognitive access”,  

– scientists and engineers who understand industrial needs 

– have the skills to formulate meaningful simulations 

– and control the error bars 
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I Have a Dream 
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• Our technological world faces enormous 
challenges 

• The solutions – for better or worse – must 
rely on technology 

• We must always do better! 

• Atomistic modeling can play an important, 
growing role 
 

 



Two Routes Forward 

• Open Source/Content 

 

 

 

• Commercial Companies 
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This is Work! 

• Integrating these methods and tools is 

much more work than developing them in 

the first place – 10x? 

• This is science, not software 

• The intellectual investment is enormous 

 

• Think chips and computers, not Linux or 

Wikipedia 
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Example: Forcefields 

• Forcefields are highly interconnected: 

new parameters must work with and extend 
preceding parameters 

• Require large effort to validate 

• Require consistency 

• Are a dynamic compromise between 
coverage and accuracy 

• Typically the work of a single group, 
headed by one person 

32 8/10/2010 



Organic Forcefields 

• No publicly available accurate organic forcefields! 
• OPLS … sort of, but quite uneven 

• MM4 … ? 

• COMPASS … commercial 

• No longer actively developed 
– Last major efforts were at Accelrys > 10 years ago 

– Allinger and MM4 8-10 years ago 

• Academic forcefield work focussing on new frontiers 
– Reactive forcefields 

– Polarizable forcefields 

– Etc. 

 

– Where do the next generation of forcefields come from? 
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What Industry Needs 

• Modeling tools that are so useful that they 
cannot be ignored! 

 

• Robust, competitive commercial products 

• Leading edge academic research moving into 
products over time 

• Intel and AMD to compete and compete 
and… 

• National Labs to demonstrate large scale use, 
also advance high computing 
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