

A comprehensive environment for property prediction and force field development Hannes Schweiger, Paul Saxe Materials Design Inc.

Agenda

- MEDEA software platform
- Properties
- Examples:
 - Vapor Pressure and VLE
 - Azeotropes
 - Phase Diagram
 - Thermal conductivity
 - Viscosity

- Intrinsic Issues in Calculations
- Challenges for industrial R&D
 - Time Pressure
 - Multiple Projects
 - Restricted Environment
- Assessment

MEDEA SOFTWARE PLATFORM

8/10/2010

Materials Design Proprietary

Purpose

Predict and understand materials properties

Approaches:

- Ab initio electronic structure calculations
- Forcefield simulations
- Statistical mechanics
- Analytical theory
- Empirical correlations
- Experimental data of existing materials (databases) as reference

Materials modeling: MedeA capabilities

MedeA's Three Tier Architecture

PROPERTIES

Forcefield Methods in MedeA

- Focus on materials properties including:
 - Density and structure
 - Vapor pressure
 - Solubility/miscibility
 - Liquid-vapor phase diagrams, critical points variables
 - Thermal conductivity
 - Viscosity
 - Mechanical properties
 - Diffusion
- Selection, editing, and control of forcefields
- Automated atom-typing and forcefield assignment
- Flow-chart control of computational stages
- Full use of parallel architectures
- Property-oriented analysis tools
- Estimation of (statistical) error bars

Forcefield Control

- Automated atom type assignment using the templates section of Materials Design's forcefield file *.frc
- Wildcards: major simplification in the angle and torsion terms critical for more complex simulations with GIBBS and LAMMPS
- Atom type equivalences for nonbonds, bonds, angles, torsions, etc.
- Versioning: each parameter has its own version, so updates do not remove older parameters but override them
- **"Include" capability:** a user can modify a forcefield by including the original, adding parameters and, by using version numbers, override parameters in the original in a well organized and controlled manner

Classes of Materials

- Gases and liquids including high pressure and temperature
- Organic materials ranging from small molecules to polymers
- Inorganic materials (e.g. crystalline, amorphous materials, glasses, molten materials)
- Semiconductor materials (Si, Ge, III-V, ...)
- Metals and alloys
- Nanostructures
- Interfaces

Computed Materials Properties

 \mathcal{O}

forcefield

with

Structural properties

- Molecular structures
- Crystal structures
- Surface structures
- Structure around defects
- Adsorption geometries
- Structures of interfaces
- Liquids and amorphous systems

Thermo-Mechanical properties

- Elastic moduli
- Speed of sound
- Vibrational properties
- Thermal expansion coefficients
- Fracture

Thermodynamic properties

- ΔU , ΔH , ΔS , ΔG , heat capacity
- Binding energies
- Solubility
- Melting temperature
- Vapor pressure
- Miscibility
- Phase diagrams
- Surface tension

Chemical properties

- · Chemical reaction rates in gases and condensed phases
- · Reactivity on surfaces
- Solid-solid reactions
- Pressure-induced reactions
- Photochemical reactions

Transport properties

- Mass diffusion coefficient
- Permeability
- Thermal conductivity
- Viscosity

Electronic, optical, and magnetic properties

- · Electron density distribution electrical moments
- Polarizabilities, hyperpolarizabilities
- Optical spectra
- Dielectric properties
- Piezoelectric properties
- Electrostatic potential
- · Spin density distribution, magnetic moments
- Energy band structure metal, semiconductor, insulator, superconductor
- Band gaps, band offsets at hetero-junctions
- · Ionization energies and electron affinities
- Work function

EXAMPLES

8/10/2010

Materials Design Proprietary

Carbon Dioxide

- Vapor pressure
- Density gas-liquid
- Ethane-CO₂ azeotrope
- CO2-SO2 phase diagram (Lachet et al., 2009)
- Viscosity
- Thermal conductivity

Gibbs ensemble Monte Carlo Biased configurational averages

LAMMPS

Results for CO₂

Ethane-CO₂ Azeotrope

\checkmark CO₂ – SO₂ Phase Diagram

Energy Procedia 1 (2009) 1641-1647

Thermodynamic behavior of the CO₂ + SO₂ mixture: experimental and Monte Carlo simulation studies

Véronique Lachet^a,*, Theodorus de Bruin^a, Philippe Ungerer^a, Christophe Coquelet^c, Alain Valtz^c, Vladimir Hasanov^b, Frederick Lockwood^b, Dominique Richon^c

^aIFP, 1-4 avenue de Bois Préau, 92852 Rueil-Malmaison, France

^bAir Liquide, 1 chemin de la Porte des Loges, Les Loges-en-Josas BP 126, 78354 Jouy-en-Josas, France ^cMines Paris-Tech, CEP/TEP, Centre Energétique et Procédés CNRS FRE 2861, 35 rue Saint Honoré, 77305 Fontainebleau, France

Thermal Conductivity

CO_2

P = 500 bar

V = 2.89 x 2.89 x 8.68 nm³

$$T = 298.2 \text{ K}$$

$$\rho = 1.0341 \text{ g/cm}^3$$

5 ns molecular dynamics

$$\lambda_{comp} = 0.141 \pm 0.017 \text{ W m}^{-1} \text{ K}^{-1}$$

 $\lambda_{expt.} = 0.1385 \text{ W m}^{-1} \text{ K}^{-1}$

Reverse non-equilibrium molecular dynamics MedeA-LAMMPS COMPASS forcefield

Viscosity

 $CO_2 - T = 298.2K - \rho = 1.0341 - P = 494 atm$ (3087 atoms)

CO₂ P = 494 bar $V = 2.89 \times 2.89 \times 8.68 \text{ nm}^3$ T = 298.2 K $\rho = 1.0341 \text{ g/cm}^3$ 0.1 ns molecular dynamics $\eta_{comp} = 1.360 \times 10^{-4} \text{ Pa s}$ $\eta_{expt.} = 1.3466 \times 10^{-4} \text{ Pa s}$ (NIST)

Reverse non-equilibrium molecular dynamics MedeA-LAMMPS COMPASS forcefield

INTRINSIC ISSUES WITH CALCULATIONS

Forcefield Accuracy

Alkanes and Alcohols

Liquid	Temperature	Density (expt)	Density LAMMPS/OPLSAA	Error
	(K)	(g/cm³)	(g/cm³)	
Butane	273	0.6013	$0.6010 \pm .0026$	-0.05%
Isobutane	273.2	0.58052	$0.6046 \pm .0039$	4.15%
Isobutane	298.2	0.55059	$0.5709 \pm .0056$	3.69%
Pentane	298.2	0.62074	$0.6156 \pm .0032$	-0.83%
Isopentane	298.2	0.61516	$0.6261 \pm .0032$	1.78%
Neopentane	298.2	0.58435	$0.6276 \pm .0036$	7.41%
Methanol	298.2	0.786	$0.7797 \pm .0021$	-0.80%
Ethanol	298.2	0.78509	$0.7955 \pm .0021$	1.30%
Isopropanol	300	0.7795	$0.8088 \pm .0036$	3.76%
1,2-butanediol	373.2	0.9394	$0.9591 \pm .0037$	2.10%
Glycerol	373.2	1.209	1.1893	-1.60%

Analyzing the Results

Which ARE the Right Results?

Decane at 480 K and 178 atm

SHAKEn?	COMPASS	OPLS
No	0.19	0.17
Yes	0.16	0.13
(experiment)	0.10015	W/m.K

SHAKEing C-H bonds and H-C-H.

Even at 480 K C-H stretch and the H-C-H and C-C-H bends will not be active. What about C-C-C?

How does this affect calculated thermal conductivity?

CHALLENGES FOR INDUSTRIAL R&D

Challenges for Industrial R&D

- Immediate Proof of Concept

- Can we calculate "x" for "y"?
 - Very short timeframe hours or perhaps a day or two
 - What exactly is "y" in terms of an atomic model?
 - Need to answer "What is the accuracy of the result?"
- Wide range of properties and systems no one tool fits all

– Projects

- Tight schedules
- Aren't simple, by definition!
- Usually require a large number of calculations 100's
- One of many simultaneous projects
- Proprietary
 - Not easy to find related work without revealing topic
 - How to get help with problems with a specific system?

Challenges of Industrial Environment

Lack of control over computing resources

- Shared resources
- IT restrictions
 - Type of hardware
 - Network access
 - Security
 - Changing passwords monthly

Software Environment

- Must be robust, robust, robust!
- Handling of a large number (>10,000/yr) of a wide range of calculations
- Well automated, including analysis
- Checking for errors
- Providing a history
- Error bars

As Anne Chaka of NIST comments: "We give away the data for free – but we charge for the error bars!"

From code to property

- Programmer's Mind
 - #kpoints
 - Optimize program
 - Platform specific
 - Special cases:
 - Non-magnetic
 - Independent blocks
 - Block/group per node
 - Expert in code
 - Full Focus

- Engineers Mind
 - Similar k-spacing
 - General approach
 - Platform independent
 - Keep procedure
 - Change molecule
 - Change process property
 - Use more computing power
 - Expert
 - One of many tools

ASSESSMENT

8/10/2010

Materials Design Proprietary

Assessment

- Computer simulations have become a viable source of many industrially important thermodynamic property data providing
 - Consistent and complete dataset
 - Resolution of conflicting experimental data
 - Extrapolation to regions where experiments are too difficult, costly, time consuming, or dangerous
 - Understanding on deep level
- We are still in an early stage; accuracy and cost-efficiency will accelerate deployment
- The key bottleneck is "*cognitive access*",
- scientists and engineers who understand industrial needs
- have the skills to formulate meaningful simulations
- and control the error bars

I Have a Dream

- Our technological world faces enormous challenges
- The solutions for better or worse must rely on technology
- We must always do better!
- Atomistic modeling can play an important, growing role

Open Source/Content

Commercial Companies

This is Work!

- Integrating these methods and tools is much more work than developing them in the first place – 10x?
- This is science, not software
- The intellectual investment is enormous

 Think chips and computers, not Linux or Wikipedia

Example: Forcefields

- Forcefields are highly interconnected: new parameters must work with and extend preceding parameters
- Require large effort to validate
- Require consistency
- Are a dynamic compromise between coverage and accuracy
- Typically the work of a single group, headed by one person

Organic Forcefields

- No publicly available accurate organic forcefields!
 - OPLS ... sort of, but quite uneven
 - MM4 ... ?
 - COMPASS ... commercial
- No longer actively developed
 - Last major efforts were at Accelrys > 10 years ago
 - Allinger and MM4 8-10 years ago
- Academic forcefield work focussing on new frontiers
 - Reactive forcefields
 - Polarizable forcefields
 - Etc.
 - Where do the next generation of forcefields come from?

What Industry Needs

- Modeling tools that are so useful that they cannot be ignored!
- Robust, competitive commercial products
- Leading edge academic research moving into products over time
- Intel and AMD to compete and compete and...
- National Labs to demonstrate large scale use, also advance high computing