Calculation of the melting point through free-energy curves was done in ref. 1 (fig. 4) using the same potential file as provided here (as can be seen in ref. 2). The authors quote $T_{\rm m} = (276.13 \pm 0.03)$ K, which is consistent with the value of 275 ± 1 K in the original paper for the potential [3].

Source	$\rho_{\rm liquid}(274.6{\rm K})$	$\rho_{\rm liquid}(298{\rm K})$	$\rho_{\rm liquid}(250{\rm K})$	$\rho_{\rm ice}(274.6{\rm K})$
Original paper [3]	1.001	0.997	1.003	0.978
Our calculations	1.002 ± 0.001	0.998 ± 0.001	1.002 ± 0.001	0.979 ± 0.001

Table 1: All densities quoted are in units of $g \cdot cm^{-3}$. Error bars are standard error of the mean.

References

- R. P. Leite and M. de Koning, "Nonequilibrium free-energy calculations of fluids using lammps," Computational Materials Science, vol. 159, pp. 316–326, 2019.
- [2] https://github.com/plrodolfo/FluidFreeEnergyforLAMMPS.
- [3] V. Molinero and E. B. Moore, "Water modeled as an intermediate element between carbon and silicon," The Journal of Physical Chemistry B, vol. 113, pp. 4008–4016, 2008.