
CALCULATING VOXEL-POLYHEDRON INTERSECTIONS
FOR MESHING IMAGES

May 12, 2021

ABSTRACT

Finite element meshes constructed from 3D images are useful in materials science and medical applications when it
is necessary to model the actual geometry of a sample, rather than an idealized approximation of it. Constructing
the mesh involves computing the intersection of the mesh elements with the voxels (3D pixels) of the image. If done
naively, this process is unstable, and small errors in the computed position of an intersection point can lead to large
errors in the computed volume. We demonstrate the source of the instability and present a robust and efficient
method of doing the computation, based on the r3d algorithm of Powell and Abel. The method was developed in the
context of the OOF3D program at NIST, but the freely available code is completely independent of OOF3D.

Keywords: image meshing

1. INTRODUCTION

When computationally modeling a complex object, it
is often convenient to begin with an image of the ob-
ject. For example, in materials science, a material may
comprise many different grains with different shapes,
compositions, and orientations, as shown in Fig. 1.
Simulating the behavior of a 3D region provides in-
sight into the behavior of the material as a whole.
Basing the simulation on a micrograph of the material
ensures that it accurately reproduces the geometry of
(at least) one particular instance of structure [1]. Simi-
larly, a medical image might provide the real geometry
of a bone, and a simulation based on the image could
compute the bone’s strength and other properties [2].

The Object-Oriented Finite element (OOF) software
developed at the National Institute of Standards and
Technology (NIST) uses finite element analysis to
compute properties of complex materials, starting
from experimental or simulated micrographs. When
the project began, creating 3D micrographs was diffi-
cult, tedious, and uncommon, so OOF1 [3] and OOF2
[4, 5] worked only in 2D, using 2D physical approxi-
mations. 3D micrographs are now common, and the
third major revision of OOF, OOF3D [6, 7], creates

3D meshes and uses 3D physics. This paper describes
part of the mesh generation method in OOF3D. How-
ever, the method is applicable to any 3D technique for
meshing images.

Mesh generation in OOF begins by first segmenting
an image, assigning material properties to each pixel,
and/or putting pixels into user-defined groups. (We
will sometimes use the words “pixel” and “voxel” in-
terchangeably, to avoid excess verbiage.) For the pur-
poses of this paper, all that matters is that pixels can
be grouped, and that pixels in one group are some-
how different from pixels in another group. The dif-
ference may be one of color or material properties or
something else. Each group can be assigned a unique
integer, which we call its “category”. For a finite el-
ement mesh to be an accurate representation of the
geometry of the image, one requirement is that each
element be as homogeneous as possible – that is, it
should overlie pixels of only one category, considering
that pixels are rectangles and voxels are rectangular
prisms, not points. A typical inhomogeneous element
is shown in Fig. 2. Note that it is always possible to
create a completely homogeneous mesh by creating a
single element per pixel, but this mesh would be over-
refined – it would resolve unphysical pixel corners and

(a)

(b)

Figure 1: A scanning electron microscope image (a) of
a cast cobalt-chrome alloy with metal carbide inclusions,
approximately 200 µm on a side. The light gray inclu-
sions have a different composition than the darker back-
ground, which consists of two regions with the same com-
position but different crystalline orientations. The diag-
onal stripes and dark spots are artefacts of the sample
preparation process. Image courtesy of Adam Creuziger
at NIST. The region in the white rectangle has been
meshed in (b) by OOF2.

contain far more elements than are usually required
for a sufficiently accurate computation.

A simple way of computing the homogeneity of an ele-
ment E would be to count the number of pixel centers
within the element for each pixel category. If there are
ni(E) such pixels of category i, then the homogeneity
could be defined as

hsimple(E) =
maxi ni(E)∑

i
ni(E)

. (1)

This simple definition clearly fails when an element
is small enough that very few (or zero) pixel centers
lie within it. Furthermore, it produces a homogeneity
that is a discontinuous and piece-wise constant func-
tion of the positions of the element’s nodes, which is
undesirable for many mesh modification tools. For ex-
ample, a tool which moves nodes will find that many

Figure 2: A screen shot from OOF3D. The yellow voxels
have the same material type, which is different from the
material of the the other, invisible, voxels. The thin lines
are the edges of the elements in a uniform tetrahedral
mesh. The element highlighted in red is inhomogeneous
because it contains both yellow and invisible voxels. The
blue edges have been computed by the method described
here and outline the intersection of the yellow voxels and
the red element.

small moves don’t change the homogeneity at all, pro-
viding no guidance on whether or not moving a node in
a given direction will improve the mesh. (This simple
method is discussed in more detail below, in Section 6.)

A more robust way of defining the homogeneity is

h(E) =
maxi Vi(E)

V (E)
(2)

where h(E) is the homogeneity of element E, and Vi

is the volume (in 3D) or area (in 2D) of the part of the
element that intersects pixels of category i. The total
volume (or area) of the element is V =

∑
i
Vi. The

definition (2) of the homogeneity has the advantage
that it is a continuous function of the positions of the
element’s nodes. Its main disadvantage is that it is
far more complicated to compute than the simple def-
inition (1), because it uses the volume of intersecting
polyhedra.

One way to compute Vi would be to loop over the
voxels in category i, finding which ones intersect the
element, and computing the volume of each intersec-
tion. Another way would be to aggregate the voxels
of category i into a region, compute the boundary of
the region, and then find the intersection of the ele-
ment with the boundary. The boundary in general is a

non-convex disconnected polyhedron requiring a more
complicated storage scheme than a simple set of vox-
els. However, it can contain many fewer faces, edges,
and vertices than the voxel set, and looping over them
can be more efficient than looping over the voxels in-
dividually. This paper describes a way to compute the
element homogeneity from the boundary of the voxel
set.

There is little or no literature specifically on comput-
ing the intersections of tetrahedra or polyhedra with
non-convex sets of voxels. In a method akin to march-
ing cubes, Frey, et al.[8] mesh images by subdividing
each voxel into many tetrahedra. This often creates
far more elements than necessary, although it does
avoid needing to compute intersecting volumes. The
problem of intersecting convex polygons in a plane
was addressed by O’Rourke, et al.[9], who comment
on the difficulty of extending their method to polyhe-
dra. Grandy[10] developed a method for polyhedra us-
ing “extremely complex geometric analysis[11]” which
has been further developed by others[11, 12], but is
not specifically applicable to sets of voxels. Ray, et
al.[13] present an algorithm for clipping convex poly-
hedra to compute Voronoi cells on a GPU. Their algo-
rithm is fast and parallel, but encounters rare special
cases which must be handled separately. Arbitrary
precision arithmetic[14] has also been used to avoid
numerical issues in related problems.

In the remainder of this paper we first show how a
naive way of computing Eq. 2 can run into trouble
due to round-off error, and then introduce a method
based on the r3d algorithm of Powell and Abel [15].
We show how the r3d method can fail in some cases,
and how to fix it. This resulting algorithm applies
to non-convex polyhedra, avoids the issue of round-off
error completely, and entirely eliminates the need to
handle special cases, being far simpler than Grandy’s
method. In Section 4 we discuss a method for effi-
ciently computing the polyhedral graphs required by
the algorithm. This computation has a fairly large
number of steps, but is straightforward, requires no
floating point arithmetic, and only needs to be done
once per image, not once per element. We conclude by
comparing the performance of the r3d-based algorithm
with the simple homogeneity calculation of Eq. 1. We
find that our method is comparably fast in many cases,
especially when the elements are large compared to the
voxels.

2. WHY IS THIS HARD?

The simplest way of computing the volume of the in-
tersection between a set of voxels and an element is to
consider each voxel independently, and sum over them
at the end. As discussed above,this can be slow and
inefficient, even in 2D. A more attractive algorithm is

N0

N1

N2

+
-

+

+

-

-

Figure 3: Finding the area of intersection of an ele-
ment and a set of pixels in 2D. Intersections between the
pixel set boundary (red) and element boundary (blue)
are marked as entrances (+) or exits (-). Entrances are
connected to exits counterclockwise along the element
boundary and elements are connected to exits counter-
clockwise along the pixel set boundary (black arrows).

to extract the boundary of the set of voxels, and com-
pute its intersection with the boundary of the element.
In this way one can compute each facet of the inter-
section region, and therefore its volume. OOF1 and
OOF2 use this method, although it is not without its
subtleties.

For simplicity, we will demonstrate the method and
one of its failure modes in 2D. Fig. 3 shows a triangular
element intersecting a set of pixels (which need not be
simply connected). We want to compute the area, A,
of the shaded intersection, I (which need not be simply
connected). We use a method based on O’Rourke’s[9]
algorithm for intersecting polygons. First, all of the
pixels of a given type are aggregated, and their bound-
ary is extracted, as shown in red. Then the intersec-
tion points between the segments of the pixel bound-
ary and the segments of the element boundary are
detected. If the element boundary (shown in blue)
is traversed counterclockwise, each intersection point
can be labelled as an entrance or an exit, depending on
whether the element boundary enters or exits the pixel
set at that point. Then the new boundary segments
of the intersection can be constructed by following the
element boundary from an entrance to the next exit,
and following a pixel set boundary from an exit to
the next entrance. To compute the area, the segments
don’t even need to be linked into loops. If the segment
i goes from point S0

i to S1
i , the area is

A =
1

2

N∑
i=0

(S0
i −C)× (S1

i −C) (3)

for some conveniently chosen center point C. To avoid

A

B

A

B

?

N0

N1

N2

N1

+
-

+-

-
+

Figure 4: Failing to find the area of intersection of an
element and a set of pixels in 2D. The entrances and
exits at node N1 are in the wrong order, so the green
segments leaving the exit are incorrect.

loss of precision in the sum, C should not be too far
away from the segments.

Now consider what happens if the rightmost node
of the element in Fig. 3 coincides with the pixel set
boundary at location N1, as shown in Fig. 4. Note that
this is not at all an unlikely situation, since any algo-
rithm that makes elements homogeneous will tend to
put nodes on pixel boundaries. There are a number of
things that can go wrong. Round-off error in the com-
putations can lead to inconsistent information about
whether point N1 is inside or outside the pixel set,
since it may make it seem that segment N0N1 inter-
sects segment AB but N1N2 doesn’t (or vice versa).
Or if the program is smart enough to insist that N1

must be either inside or outside, but not both, it can
still misplace intersection points on segment AB, as
shown in the inset. It’s possible that node N1 may
be outside the element (by an infinitesimal amount)
but that the computed entrance intersection of seg-
ment N1N2 with AB might precede the exit intersec-
tion of N0N1 on AB. In this case, following the pixel
boundary from the the exit point to the entrance won’t
connect the two points, but will follow the green line,
adding incorrect edges to the perimeter of I. Thus a
microscopic error in the position of the points can lead
to a macroscopic error in the area A.

In 3D, the method and its failure modes are similar,
except that both are more complex. We want to find
the volume, V, of the intersection, I, of a set of voxels
with a convex polyhedral element. First, the exterior
of a set of voxels is divided into a set of facets. Each
facet is a set of pixels in a plane. The intersection of
that plane with the element is a polygon, and the in-
tersection of that polygon with the pixels in the plane
can be found using the 2D algorithm. These in-plane
intersections form part of the exterior of I. The re-

maining faces of I lie on the faces of the element, and
can be computed by finding the edges of the in-plane
intersections that lie on the element faces, and linking
them, if necessary, along the edges of the faces. All of
the difficulties of the 2D method apply, with additional
complications. Is a point actually on a face? Actually
on an edge? Which face is it on? What if a segment
appears to intersect only one face of the element but
both of its endpoints appear to be outside?

In 2D, these difficulties can be overcome by careful
bookkeeping and using simple geometry to resolve am-
biguities, following a “topology first” scheme. For ex-
ample, in the example of Fig. 4, the fact that two
exits (-) appear consecutively is a clue that something
is wrong.1 In 3D, detecting and correcting errors de-
volves into a forest of special cases and the resulting
code is fragile, inefficient, and untrustworthy.

3. POWELL AND ABEL’S R3D
ALGORITHM

An algorithm by Powell and Abel [15], based on ideas
from Sugihara [16], provides a robust way of comput-
ing the intersection volume. Powell and Abel’s r3d
algorithm is a way of conservatively transferring data
from one mesh to another so that integrals of the data
over the new mesh are the same as integrals over the
old mesh. Their original paper [15] described a method
that computed integrals of polynomials over the inter-
sections of two convex polyhedra (the polyhedra being
elements from the old and new meshes), but a modi-
fied algorithm [17] works even if one of the polyhedra
is not convex. We can use the method to compute
the volume of the intersections I — our element is a
convex polyhedron, our voxel set is a (possibly) non-
convex polyhedron, and the polynomial that we are
integrating is 1.

r3d works by constructing a planar graph of the non-
convex polyhedron and clipping it successively by the
each of the planes of the faces of the convex polyhe-
dron. The graph is isomorphic to the non-convex poly-
hedron — nodes of the graph correspond to vertices of
the polyhedron, edges of the graph correspond to edges
of the polyhedron, and they are connected identically.
(We will use the word “vertex” to refer to corners of
the polyhedron, and “node” to refer to the correspond-
ing points in the graph.) If the polyhedron is sliced
by a plane that divides it into two (possibly more, if
nonconvex) regions, r3d constructs the graph of the
new polyhedron on one side of the plane, using only
information about which vertices are on which sides of

1Actually, even in 2D OOF2 uses a method similar to
that described in this paper because it is simpler and re-
quires no consideration of special cases. Instead of exam-
ining the entire element, it trims the pixel set one element
edge at a time.

(f)

(a)

(d)

(e)

(b)

1

3

2

1

3

2

(c)

A

B

C

1

3
2

1

3 2
C

A

B

Figure 5: Clipping a single corner from a polyhedron
composed of three voxels. (a) The unclipped polyhe-
dron, with three faces and edges labelled. The clipping
plane is not shown, but passes between the starred ver-
tex and the rest of the polyhedron. (c) The graph of the
polyhedron, with corresponding faces and edges labelled.
(d) The clipped node has been removed from the graph,
and new dangling nodes (circles) inserted. (e) The end-
points of a missing edge are discovered by following graph
edges from one dangling node to another, turning right
at all intermediate nodes. (f) The completed graph, af-
ter all dangling nodes are completed. (b) The clipped
polyhedron, reconstructed from the graph.

the plane. Powell and Abel explain that by preserving
topological consistency at all steps, and not relying
on any arithmetic operations after deciding which ver-
tices to clip, the method is robust in the presence of
numerical errors. Unlike the naive method discussed
in Section 2, small errors in arithmetic lead only to
small errors in the results.

To be specific, when intersecting polyhedron P with
convex polyhedron E , the process is [17]:

1. Construct a planar graph of P, making sure that
the edges at each node are in the same order as
the edges of the polyhedron at the correspond-
ing vertex, when viewed from outside the poly-
hedron. Figs. 5a and c show a polyhedron and

its planar graph. A planar graph is one that
can be drawn in a plane with no crossing edges.
Each node must link to exactly three edges. (If
a vertex of the polyhedron is on more than three
edges, that vertex must be represented by more
than one node in the graph, possibly connected
by edges of zero length.) The edges of the graph
divide the plane into regions that correspond to
the faces of the polyhedron, including the part of
the plane that lies outside of the graph. (Every
convex polyhedron can be represented by a pla-
nar graph, but sets of pixels can form non-convex
polyhedra.)

2. Choose one of the faces of E . The clipping plane
is the plane containing this face.

3. Remove the vertices of the graph that are out-
side the clipping plane, leaving dangling edges,
as shown in Fig. 5d. Put a new node at the
end of each dangling edge. The position of the
corresponding vertex on the polyhedron can be
found by interpolating along the original un-
clipped polyhedron edge. If rounding error puts
an intersection point just past the end of the edge,
it can be assumed to coincide with the endpoint.
The graph itself contains no position information,
so in the graph the position of the node is imma-
terial.

4. Choose one of the new nodes, N′. In Fig. 5e, this
is node 3.

5. From N′, follow existing edges from node to node,
always picking the right hand branch at pre-
existing nodes (all of which have three edges) un-
til another new vertex, N′′, is encountered. In
Fig. 5e, this is vertex 2. It makes sense to refer
to the “right hand branch” because the graph is
planar.

6. Add a directed edge from N′′ to N′, as shown in
green in Fig. 5. The direction can be used later
to determine the outward normal of the face, but
is not strictly necessary.

7. Go back to step 4 and repeat until all nodes have
three edges, as in Fig. 5f.

8. Go back to step 2 and repeat for each face of the
element E .

9. Find the facets of the clipped polyhedron by pick-
ing an edge of the graph and moving from edge to
edge, turning left at each node, until the original
edge is reached. From the edges, compute the
area and normal vector of each facet, and from
that the volume.

(e)

(a)

(c) (d)

(b)

1

3
2

4

5
6

1

3
2

4

5
6

1

3
2

4

5
6

1

3 2

4

5

6

Figure 6: Clipping two corners from the polyhedron of
Fig. 5. (a) The unclipped polyhedron. The starred
vertices are outside the clipping plane and will be re-
moved. (c) The polyhedral graph with the clipped nodes
removed. The unclipped graph is the same as Fig. 5c.
(d) Following the graph from new node 5 to new node
3 along the heavy black line creates an edge (green ar-
row) that appears to span too much of the graph. (e)
The completed graph. (b) The clipped polyhedron. The
heavy arrows indicate collinear edges of the new facets.
The edges cancel each other out in the region between
the new triangular facets (dark gray).

Notice in Fig. 5 what happens if the vertex is within
round-off error of the clipping plane, and the decision
of whether or not it should be clipped is ambiguous.
If it is clipped, then the topology of the new polyhe-
dron is exactly what is shown in the figure, but the
new facet will be small, and the volume removed will
be insignificant, on the order of the error in position
cubed. If it is not clipped, then of course the volume
is unchanged. This is what makes the calculation ro-
bust. The volume calculation does not depend on how
the position of an ambiguous point is resolved.

When the voxel set has concavities, it is possible that a
clipping plane will intersect it in more than one region.
Fig. 6 illustrates one such situation and the applica-
tion of the algorithm to it. When both of the starred
vertices in Fig. 6a are clipped, the intuitive solution
is to replace each with a triangular facet. The algo-
rithm instead generates two linked triangular facets,
shown in Fig. 6b. However, the new vertices at points
3, 1, 4, and 5 are collinear (on the line formed by the
intersection of the left face of the voxels and the clip-
ping plane), so between points 1 and 4 the bridge be-

(b)

(a)

ab

c

d e

f

B

A C

Figure 7: Clipping another concave set of voxels. (a)
A set of 7 voxels, arranged in a cube with one corner
missing. The corners marked with stars are outside the
clipping plane and will be removed. (b) The result of
applying the r3d algorithm. There are two new faces
denoted by the green and red arrows. The faces are
coplanar and oppositely directed, so the inner hexagonal
face (abcdef) cancels the interior of the outer triangular
face (ABC).

tween the triangles comprises two oppositely directed
collinear segments. These make no net contribution to
the area of the facet or volume I of the clipped polyhe-
dron, so this somewhat convoluted geometry is harm-
less. (If the vertices were not collinear, the left face
would necessarily be split into multiple facets, which
would introduce new edges in the graph, and the al-
gorithm would no longer connect vertices 3 and 5.)
Similarly, in Fig. 7 a concave set of voxels is clipped
so that three corners are removed. In this case, there
are two new coplanar facets, a triangle and a hexagon,
with oppositely directed normals. The triangular facet
is indicated by the heavy green arrows in the figure.
The hexagonal facet, indicated by the thin red arrows,
cancels the area of the interior of the triangular facet,
so that net result is the three dark triangular faces.

A1

2
B

C

3

4

C

B
A1

4

2

3

(a)

(b) (c)

4

1
2

B

3

A

C

Figure 8: Applying r3d blindly to an insufficiently con-
nected polyhedron. (a) The voxels forming the polyhe-
dron. The vertices marked with stars are outside the
clipping plane. (b) The graph of the polyhedron, with
some nodes and faces labelled for comparison with (a).
(c) The result of applying r3d to (b). The section includ-
ing face C has become a disconnected graph.

Using directed edges when reconnecting the clipped
graph makes it clear that the hexagonal and triangu-
lar faces have opposing normals. Again, the result is
correct for the purpose of computing the volume of the
clipped polyhedron.

To maintain topological consistency, r3d relies on the
graph of the polyhedron being 3-vertex-connected,
that is, not separable into two pieces by removing any
two nodes. Polyhedra created from voxel sets can eas-
ily fail this test, but the algorithm still works with a
slight modification. Consider the polyhedron shown in
Fig. 8, built from a 2 × 2 × 4 brick of voxels, with 2
voxels removed from one side. The graph of this poly-
hedron, Fig. 8b, is not 3-vertex-connected, because it
falls into two pieces if nodes 2 and 3 are removed.

c

a

b

a

b

(a)

(b) (c)

a

b

c

Figure 9: A perturbed version of Fig. 8. (a) The
perturbed polyhedron, with two new infinitesimal faces.
Stars mark the vertices to be clipped. (b) The graph of
the polyhedron. The doubled edges are infinitesimal. (c)
The result of applying r3d to (b).

Now clip the polyhedron with a plane that removes
only vertices 2 and 3. This can only occur due to nu-
merical error, because a plane that clips vertices 2 and
3 must necessarily also clip either vertex 1 or vertex 4
or both, but this is exactly the sort of numerical error
that is expected and must be handled. Applying r3d
to Fig. 8b results in the disconnected pair of graphs
shown in Fig. 8c, with the new edges shown in green.
The lower part, containing face C, is an inverted (neg-
ative volume) pentagonal prism. It is difficult to inter-
pret the upper graph. Do the two oppositely directed
edges cancel each other out? Does that leave dangling
nodes at their ends?

The fact that this situation must be the result of
numerical error indicates how it should be resolved.
Vertices 1, 2, 3, and 4 must actually be collinear.
(Any modification to the polyhedron that makes them
non-collinear without adding extra vertices between
them also restores 3-vertex-connectivity.) Infinitesi-

B

A1

4

2

C

3

(a)

(b)

4

C
1

B

3

2

A

Figure 10: Resolution of the problems in Fig. 8. Ver-
tices 1 and 4 are joined directly (thin green line) as are
vertices 2 and 3 (thick green line). The inner polyhedron
is subtracted from the outer one.

mally perturbing the polyhedron by shaving a strip
off of the corner, as shown in Fig. 9, will not change
its volume. The perturbed polyhedron has two new
faces, labelled ‘a’ and ‘b’, and its graph has 3-vertex-
connectivity. Using r3d to clip the four starred vertices
produces the disjoint pair of graphs in Fig. 8c. The
lower graph is again an inverted pentagonal prism,
one face of which has two infinitesimal edges. The
upper graph is a pentagonal prism with an infinites-
imally thin facet that is broken into three sub facets
labelled a, b, and c, all positively oriented. Collapsing
the infinitesimal edges and faces leads to the graph
and polyhedron in Fig. 10. (The arrows have been
dropped from the new edges, because they no longer
belong to new faces whose orientation must be deter-
mined.) The eight vertices on the thin facet in Fig. 9c
are all collinear so the facets collapse into a single line
from vertex 1 to vertex 4. In other words, the correct

stratagem is not to connect nodes 2 and 3 in Fig. 8c
with a double edge, but to connect nodes 1 and 4 with
a single edge. The final graph is two separate quadri-
lateral prisms, one of which is inverted. The polyhe-
dron is formed by the subtraction of the smaller poly-
hedron from the larger, and its net volume is the same
as the initial set of voxels in Fig. 8, as it should be.

Computationally, it is difficult and expensive to verify
3-vertex-connectivity and to know when this proce-
dure will need to be imposed. However, it is fast and
easy to check for doubled edges in the graph, and to
repair them by replacing them and the single edges on
either side (i.e, 1234 in Fig 8c) with one single edge
(14 in Fig 10a).

4. CONSTRUCTING GRAPHS OF
VOXEL SET BOUNDARIES

Before r3d can be applied to a segmented image, the
graph of each voxel set must be found. This can be
a time consuming procedure, but it can be done just
once, and doesn’t need to be repeated unless the voxel
categories change. Here we discuss how this can be
done using C++.

Although the code described here was developed for
OOF3D, it was written to be independent of it us-
ing C++ templates. The template parameters are an
IMAGE (a three dimensional array class), an IMAGEVAL

(the value of a voxel), a COORD (a floating point coor-
dinate), an ICOORD (an integer coordinate). The sim-
ple requirements for those classes are described in the
source code header files (see Section 8).

4.1 Algorithm Components

It’s convenient to first describe the classes that we use
to represent the voxel set boundary and its graphs.

A VoxelSetBdy describes a voxel set boundary. It cre-
ates a graph from an image and computes intersec-
tions.

A VSBGraph is the graph of the boundary edges of a
voxel set. It is contained in a VoxelSetBdy.

A VSBNode is a node in a VSBGraph. Each VSBNode

knows its neighboring nodes, and its position in space.

A ProtoVSBNode is a point in the image at a corner
where voxels meet, and encodes the geometry of the
voxel set at the corner.

The algorithm constructs a VSBGraph of the voxel set
boundary. The first step of the algorithm is to iden-
tify relevant voxel corners, which are associated with
ProtoVSBNode objects. The ProtoVSBNode object sub-
types reflect the local geometry, which in turn deter-
mines how many (zero or more) VSBNodes are required

for each ProtoVSBNode. Finally, using the geometry
encoded in the ProtoVSBNodes, the appropriate edges
are inserted between the corresponding VSBNodes, the
ProtoVSBNodes are discarded, and the graph is now
complete.

4.2 Creating Proto Nodes

The first step in building a graph is constructing an
array of ProtoVSBNode (Proto Voxel Set Boundary
Node) pointers, one for every voxel corner in the im-
age. If the image is k × l ×m voxels, the array size is
(k+ 1)× (l+ 1)× (m+ 1) because the ProtoVSBNodes
live at the corners of the voxels, not the centers. Each
ProtoVSBNode contains information about the eight
voxels that meet at that point in the image. A voxel
is occupied if it’s in the current category. (On the
image edges, the non-existant voxels outside the im-
age are considered to be unoccupied.) Assigning a 1
to an occupied voxel and 0 to an unoccupied voxel
and arranging the bits in an arbitrary but consistent
order reduces the local configuration of eight voxels
to a one byte signature. (See Fig. 11.) There are
different ProtoVSBNode subclasses for different signa-
tures. Although there are 256 signatures, only 17
ProtoVSBNode subclasses are needed, because voxel
configurations that can be rotated into one another
are represented by a single class. For example, one
ProtoVSBNode subclass covers all of the eight config-
urations that have only one occupied voxel. Another
subclass covers the 24 orientations of the configuration
of three occupied voxels in Fig. 12. A ProtoVSBNode

of the correct subclass is created at each voxel corner
using a signature-based lookup table, storing the ro-
tation required to bring the actual voxel configuration
into alignment with the subclass’s reference orienta-
tion. A ProtoVSBNode is not allocated for the 38 con-
figurations of voxels that don’t correspond to a corner
in the aggregated voxel set.

4.3 Creating Graph Nodes

The second step is to create a new empty VSBGraph

object, and for each ProtoVSBNode to create one or
more VSBNodes in it. The VSBGraph is mostly just
a container for VSBNodes. A VSBNode stores its po-
sition in the image and pointers to its three neighbor-
ing VSBNodes in the graph (thereby mixing informa-
tion from the real-space and graph-space representa-
tions of the polyhedron). In an unclipped graph, a
VSBNode’s position is at integer voxel coordinates, but
node positions in a clipped graph are not constrained
and must be stored as floating point numbers. The
list of pointers to neighbors is ordered so that neigh-
bor (i + 1) mod 3 is clockwise from neighbor i, which
facilitates graph traversal in the r3d algorithm.

X

Z

y

00000010

00001000

00000100

00000001

0001000000100000 0100000010000000

Figure 11: The geometry of a ProtoVSBNode. The green
circle is the position of the node. The binary digits are the
labels of the eight neighboring voxels. A voxel is occupied
if it’s in the category whose graph is being computed.
The signature of the ProtoVSBNode is the bitwise-or of
the labels of the occupied voxels.

Figure 12: Two of the 24 voxel configurations in one
of the ProtoVSBNode subclasses. The green circle is the
position of the ProtoVSBNode, and the occupied vox-
els are shaded. The green lines show the directions in
which this ProtoVSBNode needs to look for neighboring
ProtoVSBNodes when connecting the graph.

A single ProtoVSBNode must create more than one
VSBNode when there are more than three edges that
meet at a point. A simple example is the case of two
voxels (or any two rectangular blocks of voxels) that
touch at a corner, as shown in Fig. 13. The graph of
this polyhedron has two independent parts, although
one node in each part shares its position with a node
in the other. The ProtoVSBNode at that point creates
two VSBNodes and links to six edges.

The colocated graph nodes in Fig.13 are not con-
nected directly to one another, and should not be con-
nected because they don’t share faces of the polyhe-
dron. Some ProtoVSBNodes, however, require the addi-
tion of multiple VSBNodes connected to one another by
edges of length zero. One example is shown in Fig. 14.

Figure 13: A polyhedron formed from two voxels that
touch at a corner, and its graph, which consists of two
independent sections. The central vertex of the poly-
hedron is represented by two nodes (drawn inside the
shaded circle) in the graph.

4.4 Connecting Graph Nodes

The third step in constructing the graph is to add
edges connecting the VSBNodes. The ProtoVSBNodes
at each point know in which directions they connect,
so they can search in those directions for their near-
est neighbors. The two ProtoVSBNodes at either end
of a edge then collaborate to decide which of their
VSBNodes should be connected to one another, and,
importantly, how the edges must be inserted into the
VSBNodes so that they are in the correct order for r3d.

The ProtoVSBNodes do all of the work in determin-
ing how VSBNodes should be connected, because they
have complete information about the local voxel struc-
ture. Each ProtoVSBNode subclass knows which of its
VSBNodes connect to the graph edges in each direction
in its reference orientation. For example, Fig. 14b
shows the configuration of nodes and edges for the
ProtoVSBNode shown in its reference orientation in
Fig. 14a. The VSBNode numbered 0 connects to the
VSBNodes numbered 1 and 5 and to a VSBNode created
by the next ProtoVSBNode in the +x direction.

The actual connection process falls into one of three
categories, described in the following subsections.

4.4.1 Connecting a Single Pair of
Nodes

Connecting two VSBNodes in the same ProtoVSBNode

is trivial, because the ProtoVSBNode contains all of
the information that it needs. The simplest non-
trival case is when two ProtoVSBNodes must connect
their VSBNodes along a direction that requires a sin-
gle edge (ie, a situation like that in Figs. 12 or 14
but not Figs. 15 or 16). For two ProtoVSBNode ob-
jects A and B to figure out which of their VSBNodes
connect along which edges, A calls B.connect(A). B

finds the spatial direction from itself to A, rotates the
direction into its (B’s) reference frame, and thereby
knows which connection is being made. For exam-

(a)

(b)

-y

-x

+x

-z

+y

+z

4

1

3

2

5

0

+x

-x-y

+y

+z

-z

Figure 14: (a) A ProtoVSBNode for a configuration of
four voxels (one is hidden). The green edges are the ones
that connect to neighboring nodes. (b) A section of the
graph created by the ProtoVSBNode. Six VSBNodes are
required. The edges between them have zero length. The
numbers indicate the indexing used internally to ensure
that the correct edges are connected to the nodes.

ple, if B is the ProtoVSBNode in Fig. 14, and A is
in direction +y in B’s reference orientation, then it’s
connecting to B’s node number 2. B.connect knows
which of its VSBNodes, bnode, needs to be connected,
but it doesn’t know which of A’s to connect to. To
find out, it calls A.connectBack(B, bnode), which
finds the appropriate VSBNode (anode) in A, inserts
bnode in the correct slot, and returns anode, which
B.connect can now insert in the correct neighbor
slot in bnode. (Simple!) ProtoVSBNode.connect and
ProtoVSBNode.connectBack are virtual functions, de-
fined independently in each ProtoVSBNode subclass,
enabling the connection process to depend on the lo-
cal geometries of both ProtoVSBNodes.

4.4.2 Connecting a Double Pair of
Nodes

Some varieties of ProtoVSBNode need to create two
graph edges in the same spatial direction. Fig. 15
shows a simple example. There there are 5 edges at
each of the vertices marked 1 and 2, which are both
represented by two graph nodes. The vertices share
the same location in physical space, but the nodes are
distinct in the graph topology. If the wires are crossed,

2

1

1

2

1

2

(a)

(b)

(c)

Figure 15: A situation requiring both coincident nodes
and coincident edges in the graph. The two blocks of the
polyhedron (a) could be single voxels or blocks of voxels.
They share the green edge. The graph (b) is the same as
the graph of two cubes, although the two nodes at point
1 coincide, as do the nodes at point 2. Both green edges
correspond to the green edge in (a). When constructing
the graph, it is important that the nodes are connected
correctly. Misconnecting nodes along the doubled edge
as in (c) results in a graph that is not 3-vertex-connected.

so to speak, the resulting graph may not have the re-
quired connectivity and may produce incorrect results
when clipped. Fig. 15c is not 3-vertex-connected, but
as it happens this configuration doesn’t cause a prob-
lem for r3d. Fig 16, on the other hand, shows a case
in which misconnection of the edges produces a graph
for which r3d results in nonsense, as seen in Fig. 17.
We should not expect r3d to work on Fig. 17a, be-
cause the graph is not planar, but this illustrates the
importance of ensuring that the connection procedure
guarantees planarity.

Note that the two graph edges that leave the two
VSBNodes in each of the ProtoVSBNodes always lie
along the edges of two voxels that share an edge,
as in Figs. 15 and 16. Call these the key voxels.

Thinking of the key voxels as having an infinitesimal
gap between them, each of the two graph edges fol-
lows the edge of its own voxel, and connects to the
graph node associated with the same key voxel at both
ProtoVSBNodes. The key voxels must have the same
relative spatial positions in both ProtoVSBNodes (in
real space, not necessarily in the reference orientation
of the ProtoVSBNode), or else there would be another
ProtoVSBNode intervening between A and B. Therefore,
the correct way to connect the VSBNodes is to find
the corresponding key voxels in each ProtoVSBNode

and connect the VSBNodes that belong to the edges of
those voxels. However, A and B may be in different
ProtoVSBNode subclasses, with different orientations,
and do not know the correspondence between their
sets of key voxels.

If the key voxels at A are i and j, let pAi and pAj be
their real space coordinates, and let NA

i and NA
j be

the corresponding VSBNodes. pAi and pAj are vectors
with integer coordinates, and we define an arbitrary
but self-consistent greater-than operator for such vec-
tors. (We are guaranteed that pAi 6= pAj .) Because
the key voxels in B must have the same relative posi-
tion as the key voxels in A, pAi > pAj ⇐⇒ pBk > pBl
if k and l are the key voxels in B that correspond
with i and j in A. This tells us how to connect the
nodes. In the program, A.connect(B) finds A’s key
voxels and passes the ordered pair to a virtual func-
tion, B.connectDoubleBack(A, N0, N1), where N0 is
a pointer to the VSBNode whose key voxel has the
larger position and N1 is a pointer to the other.
B.connectDoubleBack figures out which of its key vox-
els has the larger position, sets the neighbor pointers
in its VSBNodes, and returns them as an ordered pair.
A.connect(B) can then set the neighbor pointers in its
own nodes correctly.

4.4.3 A Special Case

There is one more subtlety to the node connection
procedure. The ProtoVSBNode configuration shown
in Fig. 18a contains two stacked voxels with a third
sharing an edge with one of the other two. The
ProtoVSBNode needs to create one VSBNode connect-
ing along all three edges of the third voxel. Another
graph edge passes through the ProtoVSBNode along the
edge of the stacked voxels, but doesn’t connect to a
VSBNode there. This causes a problem, because that
extra edge means that this ProtoVSBNode sits between
two other ProtoVSBNodes that need to connect to one
another, but ProtoVSBNodes always connect to their
nearest neighbors. The expedient solution is to allow
it to create a VSBNode with only two edges, as shown
in Fig. 18c. Then after all connections are made, those
nodes and their edges can be removed and replaced by
a single edge.

A B

C

(a) (b)

(c) (d)

C
BA

C

Figure 16: (a) A polyhedron that yields a doubled graph edge, as in Fig. 15, but in a non-trivial environment. The green
edge in the polyhedron, where two voxels touch edge-wise, will become two edges in the graph. The two facets labeled C
are coplanar. (b) The graph of the polyhedron, with the green edges from (a) highlighted. (c) The clipped graph, after
the vertices marked with stars in (a) and (b) are removed. The heavy lines and circles mark the new vertices and edges.
(d) The clipped polyhedron.

4.5 Cleaning Up

Finally, after all connections are made, all of the
ProtoVSBNodes can be deleted.

5. ACCURACY CHECKS

To check the accuracy of the algorithm, we used
OOF3D to create artificial microstructures containing
two categories of voxels and superimposed finite ele-
ment meshes on the microstructure. We calculated the
volumes of the elements in two ways: Vg is the geo-
metric volume, using just the positions of the nodes,
while Vr uses r3d to find the intersection of the el-
ement with each voxel category, and sums over cat-
egories. For each element we found the relative er-
ror, E = |Vr − Vg| /Vg, and computed its average, Ē,
standard deviation, δE, and maximum over the entire
mesh, Emax. In addition, we computed the total vol-
ume, V i

t of each voxel category i by summing the r3d
results in each element and also by simply counting
the number of voxels Ni in each category in the entire
microstructure, multiplied by the volume of a voxel.
The relative discrepancy between these two results,
Ei =

∣∣V i
t −NiVvox

∣∣ /(NiVvox) gives another error es-
timate for each category.

All tests were performed on microstructures that were
cubes of side 1 (in arbitrary units). The cubes were
divided into M × M × M voxels. A uniform finite

element mesh was created by dividing the microstruc-
ture into Nx × Ny × Nz cubes, and splitting each
cube into 5 tetrahedral elements. Usually, we took
Nx = Ny = Nz ≡ N .

As a baseline check, we used only one category of voxel,
making all intersection calculations trivial. With M =
50 and N ranging from 1 to 50, Ē increased roughly
linearly from 6.3× 10−16 to 1.5× 10−14, with δE ≈ Ē
at each N . The largest value of Emax was 1.6× 10−13.
The error in the total volume of the category, E0, was
larger and noisier as a function of N , but still always
below 7× 10−12. (Machine epsilon was 2× 10−16.)

Nontrivial tests were done with two different mi-
crostructure geometries, both using two categories of
voxels. In the first geometry, voxels were randomly
assigned to one of two categories with probability p.
In the second geometry, all voxels within a set of ran-
domly placed and possibly overlapping spheres were
in one category, and voxels outside the spheres were
in another. The number of spheres, their mean ra-
dius, and the width of the radius distribution were ad-
justable. All randomized configurations were repeated
at least 20 times. Using M of 5, 50, and 100, and N of
4, 10, 11, no errors greater than 10−14 were observed
in any runs of either geometry. The error magnitude
increased when the elements’ aspect ratio was allowed
to vary, but even setting Nx = 10000, Ny = NZ = 1
only raised the average error Ē to 1.3 × 10−12 and

(a) (b) (c)

Figure 17: (a) The nodes on the doubled edge in the polyhedron in Fig. 16 are connected incorrectly. The graph is
nonplanar. (b) The result of using r3d to remove the starred nodes from (a). The circles represent new nodes. Green lines
show one plausible but incorrect facet. The red lines show r3d’s path through the graph when starting at the red node.
The path returns to its starting node, indicating that the algorithm has failed. (c) The polyhedron represented by (b),
drawn on top of the correctly clipped polyhedron from Fig. 16. The incorrect path is marked in red.

Emax to 1.2 × 10−11 (in a run with M = 100 and 60
spheres of mean radius 0.15).

The largest errors observed in any run occurred when
the mesh was modified by moving nodes at random
(while ensuring that elements were still well-formed).
In one case, an element with a y-dimension that was
10−3 times its x and z dimensions had an error E of
3× 10−10 (using a microstructure of 100 spheres with
mean radius 0.1, M = 100, and N = 4). No larger
errors were observed.

Given these results, it is reasonable to assume that
errors in the calculation of element/voxel intersections
will be negligible compared to other sources of error,
such as finite element discretization or numerical error
in the solution of PDEs.

6. COMPARISON TO THE SIMPLE
METHOD

The simple homogeneity calculation given by Eq. 1 is
substantially faster than the robust r3d method (up to
80 times faster in some observations), so it is natural
to ask if the r3d method is actually necessary. To
make Eq. 1 usable, we add the stipulation that the
homogeneity of an element that contains zero voxel
centers is 1.0, and that it belongs to the voxel category
at the location of the geometric center of the element.

A useful measure of how well a mesh approximates an
image is what we call the “homogeneity index”, H.
Recall that the homogeneity, h(E), or its approxima-
tion hsimple(E), is the largest fraction of an element’s
volume that is occupied by a single voxel category. As-
suming that the element’s properties are determined
by that maximal voxel category, then the homogeneity

index

H =

∑
V (E)h(E)∑
V (E)

(4)

is the volume fraction of the entire image in which
the voxel category matches the element category. The
sums in Eq. 4 are over elements. A mesh that perfectly
matches its image will have H = 1. We can compute
an approximate homogeneity index

Hsimple =

∑
V (E)hsimple(E)∑

V (E)
(5)

similarly using by using the simple homogeneity cal-
culation.

In Fig. 19 a uniform mesh has been imposed on a
3D image that is split 40:60 between two colors along
a plane perpendicular to one axis. Meshes of var-
ious sizes were created by splitting the image into
N×N×N cubes, and dividing each cube into 5 tetra-
hedra. (In the figure, N = 7.) Then each mesh was
annealed to increase its overall homogeneity – each
node was displaced in x, y, and z by a distance chosen
from a Gaussian distribution of width δ = 1 (in voxel
units) and the new position was accepted or rejected
according to whether or not it increased the homogene-
ity of the element, using either h(E) or hsimple(E). A
shape quality factor ensured that moves that created
badly shaped elements were rejected[6], and nodes on
the corners, edges, and faces were constrained to stay
on those corners, edges, and faces. In a single anneal-
ing iteration, each node was addressed once, and the
process was repeated for 50 iterations after which the
homogeneity index H was recorded. Then the mesh
was reset to its initial state and annealed again. The
results shown in Table 1 are averages over 10 runs.
(Please note that this is not an efficient method of
meshing this particular image.)

-x

-z

+y

+z

+z

-z

+y

-x

+z

-z

+y

-x

?

(a)

(b) (c)

Figure 18: A special case. The ProtoVSBNode (a) needs
to create a single VSBNode with three edges (b) and
also allow neighboring VSBNodes in the ±z directions to
connect directly to one another. Creating a temporary
VSBNode (c) with only two edges allows the connection
process to involve only nearest neighbor ProtoVSBNodes.

TheN = 1 mesh contains no moveable nodes and can’t
be annealed. For N = 5 and N = 10 the boundary be-
tween green and blue pixels falls on a plane of element
faces. All elements in the initial mesh are completely
homogeneous with either calculation, so the annealing
procedure does nothing. For N = 7, 8, and 9 the sim-
ple algorithm falsely concludes that the initial mesh is
completely homogeneous, and does nothing (because
any node motion can at best decrease the homogene-
ity), while the r3d algorithm improves the homogene-
ity. Notice that annealing with r3d achieves a larger
homogeneity index than the simple method for all N
except 4.

The simple homogeneity tends to overestimate the
homogeneity of the elements, causing the annealing
process to accept moves that don’t actually increase
the homogeneity (when the the homogeneity after the
move was erroneously large) or to reject moves that
do (when the homogeneity before the move was erro-
neously large). To see if this overestimation occurs
in a more realistic scenario, we generated artificial
micrographs by selecting spherical regions of voxels
within a 100 × 100 × 100 image, as shown in Fig. 20,

X

Y

Z

(a)

X

Y

Z

(b)

Figure 19: (a) A uniform mesh on a simple two color
10× 10× 10 voxel image. The inhomogeneous elements
in the third layer give the whole mesh a homogeneity
index H = 0.971, although the simple algorithm finds
Hsimple = 1.0. (b) After annealing, the homogeneity
index has increased to H = 0.992.

and compared H and Hsimple for uniform meshes on
those images. (For each image, 250 spherical regions
were selected by choosing a center point from a uni-
form random distribution and choosing a radius from
a Gaussian distribution with mean R = 0.08 and stan-
dard deviation W = 0.03, in units of the length of the
image side. No effort was made to avoid overlapping
spheres.) Voxels within spheres make up about 50% of
each image, and for the purposes of the homogeneity
calculation are assumed to be different from the rest
of the voxels.

Table 2 contains the difference δ between H and
Hsimple for various mesh sizes, averaged over 50 differ-
ent randomly generated microstructures. A positive
difference indicates that the simple method overesti-
mated the homogeneity on average. (When the dif-
ference is small, the simple calculation is occasionally
a slight underestimate.) Although the differences are
in general small, they are not all negligible. A frac-
tion 1−H of the voxels in a mesh are miscategorized
by the mesh. These voxels are naturally concentrated
at the internal boundaries in the image, which define
the features that the mesh should reproduce. A better
measure of the quality of a mesh (in this regard) is the
excess inhomogeneity, shown in the last column of the
table. This normalizes the difference δ by the inhomo-
geneity 1−H. The excess inhomogeneity can easily be
a percent or two, and since this can arise from a small
subset of the elements, it indicates that the simple al-
gorithm may be performing badly in those cases.

The last column in Table 2 is the average ratio of the
computation time2 for the r3d method to the com-

2The r3d times include the time taken to clip the graphs
and compute the homogeneity, but not the time involved
in constructing the graphs. This is because in many sit-
uations the graphs only need to be constructed once per
image, but the clipping operation will be performed often
on each element. The graph construction time depends on
a number of factors, but for the examples used in the tables

Initial H after Annealing with. . .
N Hsimple H . . .Hsimple . . .H

1 0.7914 0.7893
2 0.8981 0.9000 0.968± 0.006 0.9966± 0.0007
3 0.9537 0.9333 0.975± 0.004 0.996± 0.001
4 0.9328 0.9473 0.968± 0.003 0.966± 0.003
5 1.0 1.0 1.0 1.0
6 0.9892 0.9649 0.9686± 0.001 0.9700± 0.0005
7 1.0 0.9714 0.9714 0.9937± 0.0006
8 1.0 0.9475 0.9475 0.9935± 0.0009
9 1.0 0.9766 0.9766 0.9781± 0.0002

10 1.0 1.0 1.0 1.0

Table 1: Homogeneity indices computed before and after annealing a uniform mesh on the 10× 10× 10 image shown in
Fig. 19. N is the number of elements along the side of the image. The columns marked “Initial” contain the initial indices
computed using the fast simple method of Section 6 (Hsimple) and the true index computed with the r3d method (H).
Note that the simple method generally overestimates the homogeneity. The last two columns contain the true homogeneity
indices after annealing, where the annealing was conducted using either the simple or r3d homogeneity. The values are
the mean and standard deviation of 10 different annealing runs on each mesh. For N = 7, 8, and 9 the final homogeneity
index after annealing with Hsimple is the same as the initial homogeneity index because Hsimple could not be improved by
any node motion, so the mesh did not change.

putation time for the simple point counting method.
Two things should be noted. First, in many cases the
r3d method is nearly as fast, or faster, than the sim-
ple method. Second, there are some cases in which
r3d performs much worse. However, those are also the
cases in which the simple method is least accurate.

The actual difference in execution time between the
two algorithms depends in a complicated way upon
the geometry of the image and the relative size of the
elements and voxels. It may be possible to use a hybrid
method in which the simple algorithm is used for large
node motions on large, well formed elements, and the
r3d algorithm is used for small elements, high aspect
ratio elements, small node motions, and any other sit-
uations in which counting voxel centers is insufficiently
descriptive.

As a robustness check, while computing Table 2 the
total volume of each element was computed by sum-
ming the subvolumes computed by r3d and comparing
them to the volume computed geometrically from the
corners of the tetrahedron. A message was printed if
the relative error was greater than 10−10. This oc-
curred only for the N × 1 × 1 meshes, and in all of
those cases the maximum relative error was less than
3× 10−9.

7. OPTIMIZATIONS

The elements of a mesh representing an image may be
large on the scale of the voxels in the image, but are
generally going to be small on the scale of the image

was roughly 10%-50% of the total time.

itself. This means that if a graph is constructed from
the whole image, a lot of time in the graph traversal
process will be spent eliminating voxels that are far
from the current element. The process can be made
much more efficient if the image is first sliced up into
bins that are a bit larger than the average size of an
element, and separate graphs are created for each bin.
Then only graphs whose bins intersect with the bound-
ing box of the element need to be considered. The data
presented in Tables 2 and 1 were computed in this this
way, with a minimum bin size of 5 × 5 × 5 voxels. A
further optimization, not implemented yet, would be
to maintain sets of graphs for a variety of bin sizes and
to use the appropriate set for each element.

If the image is very large, it may be inconvenient to
create and store the full array of ProtoVSBNodesduring
the graph construction step. It may be more effi-
cient to create the ProtoVSBNodes on demand, and to
delete them when they’re known not to be needed.
ProtoVSBNodes only need to look for neighbors in the
positive x, y, and z directions. If the loop over nodes
is done in the positive direction, all nodes with x po-
sitions less than the current value of x can safely be
deleted. (This optimization has not yet been imple-
mented in OOF3D.)

It may be possible to speed up our code by reducing its
object-oriented nature, at the loss of some generality.
Powell and Abel’s r3d code in C uses lists and list
indices, whereas ours uses objects and pointers.

Figure 20: An artificial microstructure consisting of ran-
domly generated spheres of one material embedded in
another material, typical of the microstructures used to
generate Table 2.

8. OBTAINING THE CODE

The method described here is used in OOF3D
but could be useful in other contexts in which
convex polygons intersect image data. The im-
plementation used in OOF3D is independent of
other aspects of OOF3D so that it can be easily
incorporated in other projects. It may be down-
loaded from http://www.ctcms.nist.gov/oof/vsb.
OOF3D itself may be downloaded from
http://www.ctcms.nist.gov/oof/oof3d. The voxel
set boundary code is in OOF3D’s SRC/common/VSB

subdirectory. Both downloads are free.

9. ACKNOWLEDGMENTS

The authors would like to thank Devon Powell for
helpful conversations and for sharing his software.

References

[1] Garcia R., Carter W., Langer S. “The Ef-
fect of Texture and Microstructure on the
Macroscopic Properties of Polycrystalline Piezo-
electrics: Application to Barium Titanate and
PZN–PT.” Journal of the American Ceramics
Society, vol. 88, no. 3, 750–757, 2005

[2] Badilatti S., Kuhn G., Ferguson S., Müller R.
“Computational modelling of bone augmentation
in the spine.” Journal of Orthopaedic Translation,
vol. 3, no. 4, 185–196, 2015

[3] Langer S., Fuller E., Carter W. “OOF: An Image-
Based Finite-Element Analysis of Material Mi-
crostructures.” Computing in Science and En-
gineering, vol. 3, no. 3, 15, 2001

[4] Reid A., Langer S., Lua R., Coffman V., Haan
S.I., Garćıa R. “Image-based finite element mesh
construction for material microstructures.” Com-
putational Materials Science, vol. 43, no. 4, 989–
999, 2008

[5] URL http://www.ctcms.nist.gov/oof/oof2

[6] Coffman V., Reid A., Langer S., Dogan G.
“OOF3D: An image-based finite element solver
for materials science.” Mathematics and Com-
puters in Simulation, vol. 82, 2951, 2012

[7] URL http://www.ctcms.nist.gov/oof/oof3d

[8] Frey P., Sarter B., Gautherie M. “Fully auto-
matic mesh generation for 3-D domains based
upon voxel sets.” International Journal for Nu-
merical Methods in Engineering, vol. 37, 2735–
2753, 1994

[9] O’Rourke J., Chien C.B., Olson T., Naddor D.
“A New Linear Algorithm for Intersecting Con-
vex Polygons.” Computer Graphics and Image
Processing, vol. 19, 384–391, 1982

[10] Grandy J. “Conservative Remapping and Region
Overlays by Intersecting Arbitrary Polyhedra.”
Journal of Computational Physics, vol. 148, 433–
466, 1999

[11] Chen X., Zhang X., Jia Z. “A robust and effi-
cient polyhedron subdivision and intersection al-
gorithm for three-dimensional MMALE remap-
ping.” Journal of Computational Physics, vol.
338, 1–17, 2017

[12] Jia Z., Liu J., Zhang S. “An effective integra-
tion of methods for second-order three- dimen-
sional multi-material ALE method on unstruc-
tured hexahedral meshes using MOF interface re-
construction.” Journal of Computational Physics,
vol. 236, no. 513-562, 2013

[13] Ray N., Sololov D., Lefebvre S., Lévy B. “Mesh-
less Voronoi on the GPU.” ACM Trans. Graph.,
vol. 37, no. 6, 265:1–265:12, 2018

[14] Shewchuk J. “Adaptive Precision Floating-Point
Arithmetic and Fast Robust Geometric Predi-
cates.” Discrete and Computational Geometry,
vol. 18, 305–363, 1997

[15] Powell D., Abel T. “An exact general remesh-
ing scheme applied to physically conservative vox-
elization.” Journal of Computational Physics,
vol. 297, 340–356, 2015

[16] Sugihara K. “A robust and consistent algorithm
for intersecting convex polyhedra.” Computa-
tional Graphics Forum, vol. 13, no. 3, 45–54, 1994

[17] Powell D. “r3d: Software for fast, robust
geometric operations in 3D and 2D.” URL
https://github.com/devonmpowell/

r3d/blob/master/la-ur-15-26964.pdf

Nx ×Ny ×Nz δ Excess inhomogeneity Tr3d/Tsimple

Equiaxed elements, decreasing size
1× 1× 1 1.04× 10−5 ± 2.×10−5 2.37× 10−5 ± 4.×10−5 0.416
5× 5× 5 0.000318 ± 4.×10−5 0.00133 ± 0.0002 1.7

10× 10× 10 0.000835 ± 5.×10−5 0.00602 ± 0.0004 2.43
20× 20× 20 0.00205 ± 8.×10−5 0.0274 ± 0.0008 5.24
30× 30× 30 0.0106 ± 0.0004 0.195 ± 0.003 7.66
40× 40× 40 0.0138 ± 0.0005 0.327 ± 0.005 10.3

Long, increasingly prolate elements
5× 5× 1 9.16× 10−5 ± 6.×10−5 0.000259 ± 0.0002 1.03

10× 10× 1 3.29× 10−5 ± 0.0002 0.000106 ± 0.0005 1.13
20× 20× 1 −3.03× 10−5 ± 0.0005 −8.53× 10−5 ± 0.002 1.27
30× 30× 1 0.00573 ± 0.0006 0.0183 ± 0.002 1.65

Prolate elements, fixed 10:1 aspect ratio
10× 10× 1 3.29× 10−5 ± 0.0002 0.000106 ± 0.0005 1.13
20× 20× 2 1.02× 10−5 ± 0.0004 5.67× 10−5 ± 0.002 2.46
30× 30× 3 0.0065 ± 0.0005 0.0328 ± 0.002 2.86
40× 40× 4 0.00835 ± 0.0008 0.0512 ± 0.005 5.5

Prolate elements, fixed 5:1 aspect ratio
5× 5× 1 9.16× 10−5 ± 6.×10−5 0.000259 ± 0.0002 1.03

10× 10× 2 0.000118 ± 0.0001 0.000444 ± 0.0004 2.14
15× 15× 3 0.00214 ± 0.0004 0.0102 ± 0.002 1.68
20× 20× 4 0.000215 ± 0.0002 0.00125 ± 0.001 3.33
25× 25× 5 0.000589 ± 0.0002 0.0041 ± 0.001 2.96

Large, increasingly oblate elements
5× 1× 1 6.28× 10−5 ± 5.×10−5 0.000152 ± 0.0001 0.765

10× 1× 1 9.24× 10−5 ± 0.0001 0.000225 ± 0.0004 0.756
20× 1× 1 0.000514 ± 0.0003 0.00126 ± 0.0008 0.751
30× 1× 1 0.00217 ± 0.0008 0.00534 ± 0.002 0.883

Oblate elements, fixed 1:5 aspect ratio
5× 1× 1 6.28× 10−5 ± 5.×10−5 0.000152 ± 0.0001 0.765

10× 2× 2 0.00028 ± 6.×10−5 0.000827 ± 0.0002 2.3
15× 3× 3 0.00126 ± 0.0005 0.00454 ± 0.002 1.45
20× 4× 4 0.00118 ± 0.0001 0.00505 ± 0.0005 3.39
25× 5× 5 0.00173 ± 0.0001 0.00864 ± 0.0005 1.93
30× 6× 6 0.00409 ± 0.0003 0.0234 ± 0.002 2.47

Oblate elements, fixed 1:10 aspect ratio
10× 1× 1 9.24× 10−5 ± 0.0001 0.000225 ± 0.0004 0.756
20× 2× 2 0.000689 ± 0.0002 0.00205 ± 0.0006 2.23
30× 3× 3 0.00372 ± 0.0005 0.0135 ± 0.002 1.89
40× 4× 4 0.00449 ± 0.0006 0.0195 ± 0.003 4.36
50× 5× 5 0.00707 ± 0.0006 0.0355 ± 0.003 2.6

Table 2: The difference δ between the homogeneity index Hsimple calculated using the simple algorithm and the index
H calculated using the r3d algorithm. The average and standard deviation were computed from a set of 50 random
microstructures, one of which is shown in Fig 20. The meshes were created by dividing the microstructure into Nx×Ny×Nz

rectangular prisms, and splitting each prism into 5 tetrahedral elements. For all geometries, Hsimple > H (i.e, δ > 0),
although the difference is insignificant when the elements are large compared to the voxels. The excess inhomogeneity,
(Hsimple −H)/(1 −H), is scaled by the amount of inhomogeneity in the mesh and is a better measure of how well the
simple algorithm approximates the more accurate r3d algorithm. The last column is the average ratio of the running time
for r3d relative to the time for the simple algorithm. Note that the times are comparable, except when the elements are
small, which is also where the simple method is least accurate.

