Microstructure Effects of Thermoelectric Nanowire Composites

8/24/2006

Mara Howell
Prof. R. Edwin García
Prof. Tim Sands
Motivation

Bookout, John F. (President of Shell USA), “Two Centuries of Fossil Fuel Energy”
\[ZT = \frac{S^2 \sigma}{\kappa_{el} + \kappa_{ph}} T \]
Thermoelectricity

Seebeck ("Direct") Effect

\[J_Q \rightarrow T_1 \]
\[T_2 \rightarrow J_\rho \]

Peltier ("Converse") Effect

\[\phi_1 \rightarrow J_\rho \]
\[J_Q \rightarrow \phi_2 \]

\[ZT = \frac{S^2 \sigma}{\kappa_{el} + \kappa_{ph}} T \]
Nanowire Composites

Sander et al., Chem. Mat., V. 15, 2002
Microstructural Effects

Wire diameter

Spacing between wires

Volume fraction of nanowire
Microstructural Effects

- Length of grains
- Grain boundaries
- Wire diameter

[Diagram showing microstructures and annotations]
Extending OOF2

\[C_p \frac{\partial T}{\partial t} = -\nabla \cdot \vec{J}_Q \]

\[\frac{\partial \rho}{\partial t} = -\nabla \cdot \vec{J}_\rho \]

\[\vec{J}_Q = -\kappa \nabla T - T \vec{L} \nabla \phi \]

\[\vec{J}_\rho = -\sigma \nabla \phi - \vec{L} \nabla T \]
Validation of Model

Non-Linear Properties for Bismuth Telluride

Validation of Model

Heat Flux as a Function of Temperature

Nonlinear Seebeck Coefficient

\[
J_Q = -\kappa \nabla T - T \cdot L \nabla V
\]

Analytical and numerical solutions differ by 1 part per 10 million.
\[\vec{J}_\rho = - \sigma \nabla \phi \]
\[\vec{J}_Q = - \kappa \nabla T \]

\[\vec{J}_Q = - \kappa \nabla T - T \nabla \phi \]
\[\vec{J}_\rho = - \sigma \nabla \phi - L \nabla T \]
Heat flux in the x direction

100 MW/m²

100 nm

MW/m²

0 MW/m²

MW/m²

−100 MW/m²
Charge flux in the x direction

$-1.0 \times 10^{11} \frac{A}{m^2}$
Conclusions

- Thermoelectricity induces internal voltages in the composite
- Misorientations at grain boundaries act as sources and sinks of charge carriers
- Grains not perfectly aligned with the fiber axis induce flux in the y and z directions
- OOF2 was successfully extended to study the effect of microstructure on thermoelectric nanowire composites
Future Work

- Engineer the microstructure to optimize the thermoelectric figure of merit

Increasing Randomness

Increasing Diameter
Questions??

Mara Howell
mhowell@purdue.edu
March Dollase Texture Probability Distribution

\[P(r, \Phi) = \left(r^2 \cos^2 \Phi + r^{-1} \sin^2 \Phi \right)^{-\frac{3}{2}} \]