#### Microstructure Effects of Thermoelectric Nanowire Composites

#### 8/24/2006

Mara Howell Prof. R. Edwin García Prof. Tim Sands



#### Motivation



Bookout, John F. (President of Shell USA), "Two Centuries of Fossil Fuel Energy" International Geological Congress, Washington DC; July 10,1985.

 $\frac{S^2\sigma}{\kappa_{el}+\kappa_{ph}}$ T ZT



#### www.tellurex.com

## Thermoelectricity



## Nanowire Composites



Sander et al., Chem. Mat., V. 15, 2002 Sander, M.S., Tan, L.-S., Advanced Functional Materials 13 (2003) p. 393.

#### **Microstructural Effects**



#### **Microstructural Effects**



Wire diameter



## **Extending OOF2**



![](_page_7_Figure_2.jpeg)

## Validation of Model

![](_page_8_Figure_1.jpeg)

Non-Linear Properties for Bismuth Telluride

Kaibe, H. et al., J. Phys. Chem. Solids, V. 50, 1989

## Validation of Model

![](_page_9_Figure_1.jpeg)

$$J_Q = -\kappa \nabla T - T \cdot L \nabla V$$

Analytical and numerical solutions differ by 1 part per 10 million

![](_page_10_Figure_0.jpeg)

$$T = 290K$$

$$\phi = 0$$

$$\vec{J}_{Q} = -\vec{\kappa} \nabla T$$

$$T = 325K$$

$$f = 0$$

$$\vec{J}_{Q} = -\vec{\kappa} \nabla T - T \vec{L} \nabla \phi$$

$$\vec{J}_{Q} = -\vec{\sigma} \nabla \phi - \vec{L} \nabla T$$

#### Voltage Field

![](_page_12_Figure_1.jpeg)

#### Heat flux in the x direction

![](_page_13_Picture_1.jpeg)

#### Charge flux in the x direction

![](_page_14_Figure_1.jpeg)

## Conclusions

- Thermoelectricity induces internal voltages in the composite
- Misorientations at grain boundaries act as sources and sinks of charge carriers
- Grains not perfectly aligned with the fiber axis induce flux in the y and z directions
- OOF2 was successfully extended to study the effect of microstructure on thermoelectric nanowire composites

### Future Work

![](_page_16_Figure_1.jpeg)

Increasing Randomness Engineer the microstructure to optimize the thermoelectric figure of merit

![](_page_16_Figure_4.jpeg)

Increasing Diameter

![](_page_16_Figure_7.jpeg)

# Questions??

#### Mara Howell mhowell@purdue.edu

## **Texture Analysis**

![](_page_18_Picture_1.jpeg)

![](_page_18_Figure_2.jpeg)

 $P(r,\Phi) = (r^2 \cos^2 \Phi + r^{-1} \sin^2 \Phi)^{\frac{-3}{2}}$