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Introduction – Functionally Graded Materials (FGMs)

FGMs are innovative composite materials whose composition and 
microstructure vary in space following a predetermined law. The gradual 
change in composition and microstructure gives place to a gradient of 
properties and performances [1].

= constituent phase A

= constituent phase B

= property A*

= property B*

Introduction
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Materials

Constituent phases

The glass [2] belonged to the CaO-ZrO2-SiO2
system: 

• Its composition did not contain Al2O3

• Its coefficient of thermal expansion was similar to 
the alumina one

• Its chemical, physical and mechanical properties 
were relatively good [2]:

Materials
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The alumina was used in two different forms:

• Polycrystalline sintered α-Al2O3 bulks were applied as substrates

• Alumina bulks “A” (FN S.p.A. Nuove tecnologie e Servizi Avanzati, 
Bosco Marengo (AL), Italy) [2]

• Alumina bulks “B” (Kéramo ceramiche tecniche, Tavernerio (CO), 
Italy) [3]

• An α-Al2O3 powder (Sulzer Metco 105SFP) was employed to obtain the 
plasma-sprayed functionally graded coatings [3]

4.0 MPa m½8.3 10-6 K-10.21380 GPaAlumina B [3]
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Fabrication techniques

Two different methods were used:

“Percolated FGM”• Percolation

• Plasma spraying “FGM-PS1”

“FGM-PS2”

From 0% to 100% glass

From 20% to 100% glass

Percolation: a thermal treatment induced the infiltration of the melted glass 
into the polycrystalline alumina substrate [2, 4].

60 µm

Res. Glass
Alumina

Glass

Al2O3 FGM

Materials
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Plasma spraying: multi-layered glass alumina functionally graded coatings 
were deposited on alumina substrates thus creating different profiles [3, 4]:

70
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50
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1230 µm
Materials
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Simulations

100 µm

120 µm

120 µm

In order to account for the gradient, several SEM images 
were assembled and used to build the FEM grids.
Simulations
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Thermal residual stresses: they were simulated and experimentally 
measured on samples obtained by percolation in alumina “A” substrates 
(maximum depth reached by the glass: 800 µm) [5, 6].

Tensile stress σ11

0 MPa 59.0 MPa

100 µm

Microstructural detail Compressive stress σ33

0 MPa -123.7 MPaglass alumina

Simulations – Thermal residual stresses
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The hydrostatic stress in the alumina was calculated as a function of depth 
along the glass infiltration direction. The simulated values were compared 
with the experimental ones, obtained by means of a piezo-spectroscopic 
technique [6].

Simulation Experimental

Hydrostatic stress in alumina

Simulations – Thermal residual stresses
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Elastic properties: OOF allowed to evaluate the elastic properties (Ex ⊥
gradient direction; Ey  gradient direction) as a function of depth. The so 
obtained values could be compared with the results of the Rule of Mixture 
and with the experimental data obtained via a depth-sensing Vickers micro-
indentation test performed on the cross section [7].

Sample obtained by means 
of percolation using alumina 
“B” substrates; maximum 
depth reached by the glass: 
1600 µm.

Simulations – Elastic properties
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In the plasma sprayed systems, the predicted values were slightly 
overestimated with respect to the experimental ones. The discrepancies were 
likely to be caused by microcracks and other defects which, due to their 
thinness, could be hardly seen in SEM images [7].

Simulations – Elastic properties
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Samples obtained by 
means of percolation 
using both alumina
“A” [8] and “B” [9].

Crack propagation: in 
FGM specimens obtained 
via percolation, cracks 
mainly started from 
residual pores and then 
propagated through glass 
domains [8, 9].

The system failure was
substantially governed by 
microstructural defects 
(pores) and glass spatial 
distribution [8, 9].

No delamination was 
predicted [8, 9].

Simulations – Fracture propagation
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pores alumina

glass cracks

120 µm 1400 µm

In the plasma sprayed sample FGM-PS1, the weakest link – as far as the 
adhesion was concerned – was represented by the graded coating-substrate 
interface; the coating broke off from the substrate when the (simulated) 
applied strain was just 0.2% [9].

Qualitative 
fracture test 
(bending) on 
FGM-PS1

Coating-
substrate
interface

Simulations – Fracture propagation
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In  FGM-PS2, the coating delamination is significantly delayed; the crack 
propagation is influenced by microstructural features such as pores and
intersplats defects [9].

pores

alumina

glass

cracks

1400 µmCoating-
substrate
interface

In fact, FGM-PS2 is thinner (experiences 
lower residual stresses than FGM-PS1) and 
presents some glass next to the interface 
(matching agent) [9].120 µm

Simulations – Fracture propagation
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Conclusions

FGMs are really complex systems: they are multi-phase materials, with a 
peculiar compositional and microstructural variation in space.

To faithfully predict the properties and performances of FGMs, a suitable 
computational tool is required, which is able to account for the
microstructural features of such graded systems (distribution of the 
constituent phases; pores; interfaces; etc.).
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