OOF And Beyond: 2D Plasticity and 3D Microstructure-based Modeling

A. Ayyar¹ and N. Chawla²

¹Department of Mechanical and Aerospace Engineering ²School of Materials Fulton School of Engineering Arizona State University Tempe, AZ 85287-6006 USA

OOF Workshop - June, 2001

11:00 Myriad Uses
Craig Carter, M.I.T.
11:30 Discussion
11:45 3-D Mesning
Panos Charalambides, Univ. of Maryland Baltimore County
12:15 Discussion
12:30 - 13:45 LUNCH - NIST CATETERIA
Inursday Afternoon - PROJECT SESSION
A session for OOF users and potential users, discussing what they have done and/or what they would like to do
Would like to do.
13:45 OUF Research at Ford Research Lab
Alex Bogicevic, Ford Research Lab
14:00 Thermal Conductivity Simulations for TBC's
JIM Ruud, GE GRD 14:00 Missochusture Drenertige Correlation for Thermal Spraw TBCle
14:20 Microstructure-Properties Correlation for Thermal Spray TBC's
14:20 Overview of OOE Bessered at OPNI
Chup Hugy Haugh Ock Bidge Not'l Lab
14:40 Discussion
15:00 OOF Research in Polymers
Martin Chiang Polymers NIST
15:15 Piezoelectricity and Beyond
Edwin Garcia MIT
15:35 OIM-2-OOE code
Venkata Vedula, Sandia National Labs
15.45 Discussion
15:55 Break
16:10 Residual Stresses in Ceramics
Yi Fang, Univ. of Houston
16:25 Microcracking in Alumina/Aluminum Titanate
Susan Galal Yousef, TU-Darmstadt
16:35 Thermomechanical stresses in composites
Nik Chawla, Arizona State Univ
16:50 Marcalling Efforts on Lowered Composite Deformation
Venkata Vedula LITRC
16:55 Discussion
17:10 Zebulon: Object-Oriented Einite Element Software for Material
Behavior Development Alan C. Mueller, Northwest Numerics, Inc.
17:20 File: Microstructure Modelling of Geological Materials
I vnn Evans, Monash University
17:25 Thermal Degradation of Marble
Thomas Weiss. Georg August Universität
17:45 Discussion
18:00 to Dinner

Modeling efforts at ASU

Continuum-based Modeling

Modeling at multi-length scales

Microstructure of extruded particle reinforced aluminum

Applications of MMCs

MMC replaced gr/epoxy FEGV in PW 4XXX engines

Power conductors

MMC Spikes for Track and Field Cleats

N. Chawla and K.K. Chawla, Metal Matrix Composites, (2006), Springer.

Approaches to numerical modeling of composites

Modeling the effect of second phase morphology on Young's Modulus

Chawla et al., J. Mater. Sci. – Mater. Elect., (2004).

2D Microstructure-based finite element analysis Elastic analysis

Chawla et al., Mater. Charac., (2003).

Stresses are inherently based on local microstructure characteristics – Elastic analysis

Chawla et al., Mater. Charac., (2003).

2D Microstructure-based modeling Results of tensile anisotropy

Microstructure based FEA was able to predict anisotropy in normalized Young's modulus

Thermal stress distribution

Particle reinforced metal matrix composites

700

N. Chawla, C. Andres, J.W. Jones, J.E. Allison, Metall. Mater. Trans. (1998)

Variation of clustering in Al/SiC/15p

- Clustering was controlled by processing composites with varying AI:SiC particle size ratio
 - Blended, pressed and sintered
- Increasing the AI:SiC particle size ratio resulted in a greater degree of SiC clustering

Homogenous distribution $D_{50}^{Al} = 7 \mu m$ $D_{50}^{SiC} = 5 \mu m$ Ratio = 1.4

A. Ayyar and N. Chawla, Comp. Sci. Tech., 66 (2006)

Processing by R. J. Fields, NIST

Incorporating actual microstructure into FEM

Effect of SiC particle clustering on local strain state Elastic – plastic analysis

Ratio = 1.4, COV = 0.38

Ratio = 6.6, COV = 0.61

Need for 3D modeling

Serial sectioning concept

Stack of series of 2D images with a given distance between the images

Serial sectioning process flow chart

N. Chawla, V.V. Ganesh, B. Wunsch, Scripta Mater. (2004).

Serial sectioning process – Region of interest

3D reconstruction and visualization

2D serial sections stacked on top of each other Contour added around the particle in each sections A surfacing process connects the contours to generate 3D object

3D Object

Wire frame view

Full texture view

3D Microstructure visualization - 2080/SiC/20_p

10 µm

Incorporating 3D model into FEM analysis

•The particles are imported into HyperMesh[®] and the matrix geometry is created. •The model is then meshed and exported to ABAQUS for analysis

10 node Tetrahedral elements

Effect of model size (Thickness)

Microstructure variability

Simulation was carried out on two models created from different regions to validate the approach

Microstructure variability

Strain (mm/mm)

Effect of simplifying particle geometry

Model	No. of Elements	Hours
3D Ellipsoidal	87323	25
3D Microstructure	89128	26

S, Mises

Microstructure

N. Chawla, R.S. Sidhu, and V.V. Ganesh, Acta Mater., (2006). N. Chawla and K.K. Chawla, J. Mater. Sci. - 40th Ann. (1966-2006), (2006).

Comparison of microstructure-based model with conventional models and experiment

N. Chawla, R.S. Sidhu, and V.V. Ganesh, Acta Mater., (2006). N. Chawla and K.K. Chawla, J. Mater. Sci. – 40th Ann. (1966-2006), (2006).

Experimental verification of internal strain/stress by neutron diffraction

http://neutrons.ornl.gov/

Monochrometer: 1.452, 1.731, 1.886, 2.275 Å

Detector Angel: 30-150°

Detection System: 7 Position-Sensitive Detectors

Detector Resolution: 1.8 mm

Measurement of internal strains during tensile test

Diffraction Peak: AI (311), SiC (116) Monochrometer: 1.729567 Å Gauge Volume: 5×5×5 mm Displacement Control Rate: 0.0005 mm/s Displacement Step Size: 0.02 mm Diffraction Acquisition Time: AI-8 minutes, SiC-4 minutes

Neutron Diffraction for Longitudinal Internal Strain Measurement

Comparison of global stress and internal stress during tensile testing

Internal stress of AI matrix and SiC particle was measured by neutron diffraction.

Strains were calculated by changes in lattice spacing during tensile testing.

Comparison of microstructure-based FEM predictions of stress/strain partitioning with neutron diffraction measurements

Modeling crack growth in particle reinforced composites

Al/SiCp system

- FRANC2D/L* was used to model crack growth
- Crack path was not known in advance, hence re-meshing method was used
- Fracture calculations using Linear Elastic Fracture Mechanics (LEFM) principles
 - Stress Intensity Factors that govern the fracture process were calculated using *Modified crack closure method*
 - Max. Circumferential Tensile Stress theory was used to determine the crack propagation direction

Numerical model description

Simulated crack paths in models with clustered particle distribution

Embedded cells

A. Ayyar and N. Chawla, Comp. Sci. Tech., 66 (2006)

Fatigue crack growth mechanisms at Low/High R-Ratio

Before Crack Growth

R = 0.1

After Crack Growth

Crack growth is observed around the SiC particles.

Crack growth is observed through the SiC particles.

Ganesh and Chawla, (2004)

Motivation for modeling reinforcement particle fracture

- Reinforcement particles do not posses infinite strength.
- Regions around a crack-tip are at a high stress state. How does this high stress influence the load bearing capabilities of the particle?
- When particles fracture, how do they influence the crack path and the crack-tip driving force?

Normal displacement (units)

Crack propagation with particle fracture

Von Mises stress contours for varying loads

Crack growth

No particle fracture

Applied stress of 7 MPa

Applied stress of 14 MPa

Applied stress of 48 MPa

Influence of particle fracture on crack trajectory

Normalized SIF vs. crack length

Ongoing research

- Modeling particle (SiC) fracture in 3D models
- Clustering analysis in 3D
- Modeling crack growth in 3D

Acknowledgments

- Postdocs: X. Deng (Kennametal) and J.J. Williams
- Graduate Students: R. Saha, B. Wunsch (MIT), and V.V. Ganesh (Intel)
- Office of Naval Research (ONR)
 - N00014-01-1-0694 (Program Manager: A.K. Vasudevan)
- High Temperature Materials Laboratory User Program (ORNL)
- M. James and D. Swenson, "FRANC2D/L: A Crack Propagation Simulator for Plane Layered Structures," available from http://www.mne.ksu.edu/~franc2d/.

E-mail: <u>nchawla@asu.edu</u> www.eas.asu.edu/~cme/cme-faculty/chawla