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FEM on Microstructures

Many years ago, an attempt was made to do FEM modeling of 
material microstructures.

It proved to be hard, available tools were poorly adapted.

Work began on a materials-focused FEM tool, which evolved to 
fill this empty niche in the tool space, including image 
segmentation tools, meshing of microstructures, and 
extensibility to custom constitutive models.



  

Scope: Materials Science

● Meso-scale samples (microns)
● Interdisciplinary (chemistry, physics, more)
● Encapsulates math for Materials Science users
● Focused on structure-property relations

● For a given structure, how do constituent 
properties control aggregate properties?

● For given constituents, what structures give good 
properties?



  

The Math of Materials Science

Typical fields: Displacement, temperature, concentration
Typical fluxes: Stress, heat flux, chemical flux

Constitutive rule – Materials Science domain 
experts know this relation

For some flux,     dependent on a field      :



  

From Math to FE

Continuum equilibrium equation:

...becomes, in “weak form”

Use this to put together a highly general,
extensible solver, with arbitrary

couplings from unknown constitutive rules



  

Constitutive Rules

● Numerous built-in properties (elasticity, etc.)
● Includes couplings (thermal expansion, etc.)
● Standard materials science nomenclature

● Ability to save, share properties
● Extension framework, stable API
● Open-source for the ultimate in extensibility

● Python conspicuously useful here

The OOF user is an expert in the constitutive rules, but may not 
want to write code



  

Workflow: Image, Segments, 
Skeleton, Mesh

● Stack images into a 3D voxel set
● Modify the image – blur, despeckle, edge-detect
● Segment – selection tools (burn, brush) identify constituent phases
● Overlay a regular, space-filling grid
● Manipulate the mesh to match the segmentation boundaries

● Bisection, node movement, simulated annealing
● Tools preserve sanity, space-filling features of the mesh
● Energy function (homogeneity, shape) measures quality

The OOF user is an expert in interpreting the results, and can rapidly 
assess correctness of the steps.



  

Workflow: Analysis of Results

Solve the system – nonlinear, time-dependent, sparse solvers

Local graphics window provides interactive assessment of data
PDF export capability, publication-quality
Statistical tools – average, standard deviation, min/max
Integration of fluxes over boundaries
Extensible – new output methods easy to add

Direct data export capability for more sophisticated analysis
OOF developers don't attempt to anticipate all analyses



  

Conceptual Framework

Material – collection of properties

Microstructure  -- “document” object

Image – maps pixels to colorsImage – maps pixels to colors

Skeleton – FE geometry

Mesh – physics of the problem



  

Using OOF
 GUI  mode or Menu-based command mode

# oof2 text
>>> OOF.File.Load.Script(“my_lifes_work.oof”)
>>> ...



  

Architecture
● Written in a combination of Python and C++

Python and C++:
● Free, multiplatform
● Object-oriented
● Mostly feature-stable

Python:
● Flexible
● Dynamic (“duck typing”)
● Many available libraries

C++:
● Many standard tools
● Fast executables
● Even more libraries

SWIG



  

Architecture

Dependent packages/libraries:
● SparseLib++ (customized, provided)
● Distutils (included with Python)
● SWIG (local fork, provided, build-time only)
● PyGTK

● GTK2
● GnomeCanvas
● ImageMagick
● Blas/lapack
● VTK (for 3D)
● Docbook (to build the manual)
● OpenMP (for parallelization)

Not required to run current 
release

Runs on Unix-like systems (Mac OS/X, Linux)



  

Architecture

SWIG Advantage:
We have the ability to move the Python/C++ language 
boundary up or down the object stack in response to 
changes in performance requirements, maintainability, 
or other changes.

Seriously OO:
Throughout the development process, careful attention 
was paid to making the object structure reflect the 
problem structure, for comprehensibility, Python/C++ 
barrier-crossing, future maintainability, and future 
expansion.



  

Automation

A number of users have successfully used OOF for parametric studies – 
build a mesh in the GUI, write a command-line script to iterate over a 
parameter of interest, and perform multiple virtual experiments.

The menu system makes it easy to manipulate OOF objects in Python.

(e.g. K. Hazeli, C. El Mir, S. Papanikolaou, M. Delbo, KT Ramesh, “The 
Origins of Asteroidal Rock Disaggregation: Interplay of Thermal Fatigue 
and Microstructure”, Icarus, 2017, in press. Arxiv:1701.03510)

. . .
OOF.Material.Assign(material=’Chondrule’,microstructure=’image3.png’, pixels=’Chondrule’)

for T in Ts:
  Pname=’T=’+str(T).rjust(5,’0’)
  OOF.Mesh.Set_Field_Initializer(mesh=’image3.png:skeleton:mesh’,field=Temperature...
  OOF.Mesh.Apply_Field_Initializers(mesh=’image3.png:skeleton:mesh’)
  . . .



  

Automation

The OOF team is also interested in exploring opportunities for data 
extraction from online databases, and integration into emerging workflow 
systems where it might add considerable value.

● Push-button extraction of property data from external databases
● Materials Project
● MDCS instances
● Materials Data Facility?

● Ingestion and generation of standard data formats for existing multiscale 
or multitool workflows

● Dream3D, HDF5
● PRISMS, ICE, others?



  

Development Focus:
Crystal Plasticity

The crystal plasticity problem spans different scientific and 
engineering communities, and multiple length scales, and would 
benefit from a materials-focused real-space tool.

● Mechanical properties are fundamental to materials behavior
● Plasticity is fundamental to mechanical properties of metals
● Crystal plasticity couples crystallography to macro behavior
● Path from plasticity to forming traverses many length scales
● Input data comes from many diverse communities



  

“Classical” Plasticity

● Profoundly nonlinear
● Inequality constraints

● History-dependent
● Path-dependent state
● Many possible variables
● Possible rate-dependence

Development Focus:
Crystal Plasticity



  

Development Focus:
Crystal Plasticity

+ field-dependent and 
non-analytic features

Plasticity is not a straightforward PDE, has history-
dependent info, and inequality constraints

Approach:
Make contact with plasticity experts from the 
experimental and computational mechanics 
community. (NIST NCAL, CMU, Johns Hopkins)

Adopt the best existing models, build from there.



  

“Crystal” Plasticity

Development Focus:
Crystal Plasticity

Has the same phenomenology, but the plastic response is made up 
of contributions from individual slip systems, dependent on the 
crystallography.

Accumulated slip of the plane with normal n in 
the direction m contributes to the plastic strain 
rate by the outer product of m and n.

The total plastic strain rate is the sum of all 
moving slip systems.



  

Development Focus:
Crystal Plasticity

Challenge:
“Impedance mismatch” – computational mechanics 
practitioners are accustomed to codes tailored to 
the mechanics problem specifically, and have a 
mature, well-tested, non-extensible algorithm!
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Development Focus:
Crystal Plasticity
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Development Focus:
Crystal Plasticity

Having learned this, our challenge is to incorporate these 
effects while retaining the generality of scope of the original 
code, and allowing for easily-pluggable plastic constitutive 
rules, packaged for Materials Science expert users.

Strategy: Prototype codes to explore the software-
architecture issues which arise here.

● Need to store inter-time-step data at integration points
● Matrix construction process interacts with time-step size
● Need to do integrals (and derivatives) in the right space



  

Development Focus:
Crystal Plasticity

Status: 
● First prototype (Python) completed, object structure settled.
● Second prototype (C++) completed, data management 
issues settled.
● Integral issues undertaken on a branch in the main repo.



  

Current Releases

● Parallelization
● Required for large data sets

● History-dependent properties
● Viscosity, CPFEM

● Inequality constraints
● Isotropic plasticity
● Surface interactions

● Newest 2D: OOF 2.1.13, December 2016
● Newest 3D: OOF 3.0.1, December 2016
● Full first- and second-order time-dependence (since 2.1.0/3.0)
● Sophisticated nonlinear solvers
● EBSD orientation-map capability (2D only, since 2.0)
● Nonlinearity-friendly property extension API
● Sophisticated meshing and image segmentation tools (since 2.0/3.0)
● Wide selection of built-in constitutive rules

In development



  

The OOF Team
Development:

Steve Langer, NIST/ITL
Andrew Reid, NIST/MML

Shahriyar Keshavarz, NIST/Theiss
Günay Doğan, NIST/Theiss

David Feraud, NIST/U. Blaise Pascal
Lizhong Zhang (NIST/U. Blaise Pascal) 
Yannick Congo (NIST/U. Blaise Pascal) 

Valerie Coffman(formerly NIST/ITL, currently Xometry)
Rhonald Lua (formerly NIST/PSU, currently Baylor)

Edwin García (formerly NIST/PSU, currently Purdue)
Seung-Ill Haan (formerly UMBC, currently Samsung)

Andrew Roosen (formerly NIST/MSEL, currently U Delaware)

Testing and feedback:
Craig Carter, MIT

Edwin Fuller, NIST ret'd

http://www.ctcms.nist.gov/oof
https://github.com/usnistgov/OOF2
https://github.com/usnistgov/OOF3D
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