

The OOF Finite Element Tool Finite
For Materials Science

Andrew Reid, NIST
SciPy 2017

July 12, 2017

FEM on Microstructures

Many years ago, an attempt was made to do FEM modeling of
material microstructures.

It proved to be hard, available tools were poorly adapted.

Work began on a materials-focused FEM tool, which evolved to
fill this empty niche in the tool space, including image
segmentation tools, meshing of microstructures, and
extensibility to custom constitutive models.

Scope: Materials Science

● Meso-scale samples (microns)
● Interdisciplinary (chemistry, physics, more)
● Encapsulates math for Materials Science users
● Focused on structure-property relations

● For a given structure, how do constituent
properties control aggregate properties?

● For given constituents, what structures give good
properties?

The Math of Materials Science

Typical fields: Displacement, temperature, concentration
Typical fluxes: Stress, heat flux, chemical flux

Constitutive rule – Materials Science domain
experts know this relation

For some flux, dependent on a field :

From Math to FE

Continuum equilibrium equation:

...becomes, in “weak form”

Use this to put together a highly general,
extensible solver, with arbitrary

couplings from unknown constitutive rules

Constitutive Rules

● Numerous built-in properties (elasticity, etc.)
● Includes couplings (thermal expansion, etc.)
● Standard materials science nomenclature

● Ability to save, share properties
● Extension framework, stable API
● Open-source for the ultimate in extensibility

● Python conspicuously useful here

The OOF user is an expert in the constitutive rules, but may not
want to write code

Workflow: Image, Segments,
Skeleton, Mesh

● Stack images into a 3D voxel set
● Modify the image – blur, despeckle, edge-detect
● Segment – selection tools (burn, brush) identify constituent phases
● Overlay a regular, space-filling grid
● Manipulate the mesh to match the segmentation boundaries

● Bisection, node movement, simulated annealing
● Tools preserve sanity, space-filling features of the mesh
● Energy function (homogeneity, shape) measures quality

The OOF user is an expert in interpreting the results, and can rapidly
assess correctness of the steps.

Workflow: Analysis of Results

Solve the system – nonlinear, time-dependent, sparse solvers

Local graphics window provides interactive assessment of data
PDF export capability, publication-quality
Statistical tools – average, standard deviation, min/max
Integration of fluxes over boundaries
Extensible – new output methods easy to add

Direct data export capability for more sophisticated analysis
OOF developers don't attempt to anticipate all analyses

Conceptual Framework

Material – collection of properties

Microstructure -- “document” object

Image – maps pixels to colorsImage – maps pixels to colors

Skeleton – FE geometry

Mesh – physics of the problem

Using OOF
 GUI mode or Menu-based command mode

oof2 text
>>> OOF.File.Load.Script(“my_lifes_work.oof”)
>>> ...

Architecture
● Written in a combination of Python and C++

Python and C++:
● Free, multiplatform
● Object-oriented
● Mostly feature-stable

Python:
● Flexible
● Dynamic (“duck typing”)
● Many available libraries

C++:
● Many standard tools
● Fast executables
● Even more libraries

SWIG

Architecture

Dependent packages/libraries:
● SparseLib++ (customized, provided)
● Distutils (included with Python)
● SWIG (local fork, provided, build-time only)
● PyGTK

● GTK2
● GnomeCanvas
● ImageMagick
● Blas/lapack
● VTK (for 3D)
● Docbook (to build the manual)
● OpenMP (for parallelization)

Not required to run current
release

Runs on Unix-like systems (Mac OS/X, Linux)

Architecture

SWIG Advantage:
We have the ability to move the Python/C++ language
boundary up or down the object stack in response to
changes in performance requirements, maintainability,
or other changes.

Seriously OO:
Throughout the development process, careful attention
was paid to making the object structure reflect the
problem structure, for comprehensibility, Python/C++
barrier-crossing, future maintainability, and future
expansion.

Automation

A number of users have successfully used OOF for parametric studies –
build a mesh in the GUI, write a command-line script to iterate over a
parameter of interest, and perform multiple virtual experiments.

The menu system makes it easy to manipulate OOF objects in Python.

(e.g. K. Hazeli, C. El Mir, S. Papanikolaou, M. Delbo, KT Ramesh, “The
Origins of Asteroidal Rock Disaggregation: Interplay of Thermal Fatigue
and Microstructure”, Icarus, 2017, in press. Arxiv:1701.03510)

. . .
OOF.Material.Assign(material=’Chondrule’,microstructure=’image3.png’, pixels=’Chondrule’)

for T in Ts:
 Pname=’T=’+str(T).rjust(5,’0’)
 OOF.Mesh.Set_Field_Initializer(mesh=’image3.png:skeleton:mesh’,field=Temperature...
 OOF.Mesh.Apply_Field_Initializers(mesh=’image3.png:skeleton:mesh’)
 . . .

Automation

The OOF team is also interested in exploring opportunities for data
extraction from online databases, and integration into emerging workflow
systems where it might add considerable value.

● Push-button extraction of property data from external databases
● Materials Project
● MDCS instances
● Materials Data Facility?

● Ingestion and generation of standard data formats for existing multiscale
or multitool workflows

● Dream3D, HDF5
● PRISMS, ICE, others?

Development Focus:
Crystal Plasticity

The crystal plasticity problem spans different scientific and
engineering communities, and multiple length scales, and would
benefit from a materials-focused real-space tool.

● Mechanical properties are fundamental to materials behavior
● Plasticity is fundamental to mechanical properties of metals
● Crystal plasticity couples crystallography to macro behavior
● Path from plasticity to forming traverses many length scales
● Input data comes from many diverse communities

“Classical” Plasticity

● Profoundly nonlinear
● Inequality constraints

● History-dependent
● Path-dependent state
● Many possible variables
● Possible rate-dependence

Development Focus:
Crystal Plasticity

Development Focus:
Crystal Plasticity

+ field-dependent and
non-analytic features

Plasticity is not a straightforward PDE, has history-
dependent info, and inequality constraints

Approach:
Make contact with plasticity experts from the
experimental and computational mechanics
community. (NIST NCAL, CMU, Johns Hopkins)

Adopt the best existing models, build from there.

“Crystal” Plasticity

Development Focus:
Crystal Plasticity

Has the same phenomenology, but the plastic response is made up
of contributions from individual slip systems, dependent on the
crystallography.

Accumulated slip of the plane with normal n in
the direction m contributes to the plastic strain
rate by the outer product of m and n.

The total plastic strain rate is the sum of all
moving slip systems.

Development Focus:
Crystal Plasticity

Challenge:
“Impedance mismatch” – computational mechanics
practitioners are accustomed to codes tailored to
the mechanics problem specifically, and have a
mature, well-tested, non-extensible algorithm!

m

n

Reference Configuration

m

n

Intermediate Configuration

Fem

nFe-1

Current Configuration

Fe

Fp

FpFe

Development Focus:
Crystal Plasticity

m

n

Reference Configuration

m

n

Intermediate Configuration

Fem

nFe-1

Current Configuration

Fe
Fp

FpFe

Development Focus:
Crystal Plasticity

Having learned this, our challenge is to incorporate these
effects while retaining the generality of scope of the original
code, and allowing for easily-pluggable plastic constitutive
rules, packaged for Materials Science expert users.

Strategy: Prototype codes to explore the software-
architecture issues which arise here.

● Need to store inter-time-step data at integration points
● Matrix construction process interacts with time-step size
● Need to do integrals (and derivatives) in the right space

Development Focus:
Crystal Plasticity

Status:
● First prototype (Python) completed, object structure settled.
● Second prototype (C++) completed, data management
issues settled.
● Integral issues undertaken on a branch in the main repo.

Current Releases

● Parallelization
● Required for large data sets

● History-dependent properties
● Viscosity, CPFEM

● Inequality constraints
● Isotropic plasticity
● Surface interactions

● Newest 2D: OOF 2.1.13, December 2016
● Newest 3D: OOF 3.0.1, December 2016
● Full first- and second-order time-dependence (since 2.1.0/3.0)
● Sophisticated nonlinear solvers
● EBSD orientation-map capability (2D only, since 2.0)
● Nonlinearity-friendly property extension API
● Sophisticated meshing and image segmentation tools (since 2.0/3.0)
● Wide selection of built-in constitutive rules

In development

The OOF Team
Development:

Steve Langer, NIST/ITL
Andrew Reid, NIST/MML

Shahriyar Keshavarz, NIST/Theiss
Günay Doğan, NIST/Theiss

David Feraud, NIST/U. Blaise Pascal
Lizhong Zhang (NIST/U. Blaise Pascal)
Yannick Congo (NIST/U. Blaise Pascal)

Valerie Coffman(formerly NIST/ITL, currently Xometry)
Rhonald Lua (formerly NIST/PSU, currently Baylor)

Edwin García (formerly NIST/PSU, currently Purdue)
Seung-Ill Haan (formerly UMBC, currently Samsung)

Andrew Roosen (formerly NIST/MSEL, currently U Delaware)

Testing and feedback:
Craig Carter, MIT

Edwin Fuller, NIST ret'd

http://www.ctcms.nist.gov/oof
https://github.com/usnistgov/OOF2
https://github.com/usnistgov/OOF3D

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

