

SWIG Users Guide

SWIG Basics

29

SWIG Basics 3
Running SWIG
SWIG is invoked by the swig command. This command has a number of options including:

swig <options> filename

-tcl Generate Tcl wrappers
-tcl8 Generate Tcl 8.0 wrappers
-perl5 Generate Perl5 wrappers
-python Generate Python wrappers
-perl4 Generate Perl4 wrappers
-guile Generate Guile wrappers
-dascii ASCII documentation
-dlatex LaTeX documentation
-dhtml HTML documentation
-dnone No documentation
-c++ Enable C++ handling
-objc Enable Objective-C handling.
-Idir Set SWIG include directory
-lfile Include a SWIG library file.
-c Generate raw wrapper code (omit supporting code)
-v Verbose mode (perhaps overly verbose)
-o outfile Name of output file
-d docfile Set name of documentation file (without suffix)
-module name Set name of SWIG module
-Dsymbol Define a symbol
-version Show SWIG’s version number
-help Display all options

This is only a partial list of options. A full listing of options can be obtained by invoking “swig
-help”. Each target language may have additional options which can be displayed using “swig
-lang -help” where -lang is one of the target languages above.

Input format
As input, SWIG takes a file containing ANSI C/C++ declarations1. This file may be a special
“interface file” (usually given a .i suffix), a C header file or a C source file. The most common
method of using SWIG is with a special interface file. These files contain ANSI C declarations like
a header file, but also contain SWIG directives and documentation. Interface files usually have
the following format :

1. Older style C declarations are not supported
Version 1.1, June 23, 1997

SWIG Users Guide

SWIG Basics

30

%module mymodule
%{
#include “myheader.h”
%}
// Now list ANSI C variable and function declarations

The name of the module (if supplied) must always appear before the first C declaration or be
supplied on the SWIG command line using the -module option (When the module name is
specified on the command line, it will override any module name present in a file). Everything
inside the %{,%} block is copied verbatim into the resulting output file. The %{,%} block is
optional, but most interface files use one to include the proper header files.1

SWIG Output
By default an interface file with the name myfile.i will be transformed into a file called
myfile_wrap.c. The name of the output file can be changed using the -o option. When work-
ing with some C++ compilers, the -o option can be used to give the output file a proper C++ suf-
fix. The output file usually contains everything that is needed to build a working module for the
target scripting language. Compile it along with your C program, link it, and you should be
ready to run.

Comments
C and C++ style comments may be placed in interface files, but these are used to support the
automatic documentation system. Please see the documentation section for more details on this.
Otherwise, SWIG throws out all comments so you can use a C++ style comment even if the
resulting wrapper file is compiled with the C compiler.

C Preprocessor directives
SWIG does not run the C preprocessor. If your input file makes extensive use of the C preproces-
sor, SWIG will probably hate it. However, SWIG does recognize a few C preprocessor constructs
that are quite common in C code :

• #define. Used to create constants
• #ifdef,#ifndef,#else,#endif, #if, #elif. Used for conditional compilation

All other C preprocessor directives are ignored by SWIG (including macros created using
#define).

SWIG Directives
SWIG directives are always preceded by a “%” to distinguish them from normal C directives and
declarations. There are about two dozen different directives that can be used to give SWIG hints,
provide annotation, and change SWIG’s behavior in some way or another.

Limitations in the Parser (and various things to keep in mind)
It was never my intent to write a full C/C++ parser. Therefore SWIG has a number of limitations
to keep in mind.

1. Previous versions of SWIG required a %{,%} block. This restriction has been lifted in SWIG 1.1.
Version 1.1, June 23, 1997

SWIG Users Guide

SWIG Basics

31

• Functions with variable length arguments (ie. “...”) are not supported.
• Complex declarations such as function pointers and arrays are problematic. You may

need to remove these from the SWIG interface file or hide them with a typedef.
• C++ source code (what would appear in a .C file) is especially problematic. Running

SWIG on C++ source code is highly discouraged.
• More sophisticated features of C++ such as templates and operator overloading are not

supported. Please see the section on using SWIG with C++ for more details. When
encountered, SWIG may issue a warning message or a syntax error if it can’t figure out
you are trying to do.

Many of these limitations may be eliminated in future releases. It is worth noting that many of
the problems associated with complex declarations can sometimes be fixed by clever use of
typedef.

If you are not sure whether SWIG can handle a particular declaration, the best thing to do is try it
and see. SWIG will complain loudly if it can’t figure out what’s going on. When errors occur, you
can either remove the offending declaration, conditionally compile it out (SWIG defines a sym-
bol SWIG that can be used for this), or write a helper function to work around the problem.

Simple C functions, variables, and constants
SWIG supports just about any C function, variable, or constant involving built-in C datatypes.
For example :

%module example

extern double sin(double x);
extern int strcmp(const char *, const char *);
extern int My_variable;
#define STATUS 50
const char *VERSION=“1.1”;

will create two commands called “sin” and “strcmp”, a global variable “My_variable”, and
two constants “STATUS” and “VERSION”. Things work about like you would expect. For exam-
ple, in Tcl :

% sin 3
5.2335956
% strcmp Dave Mike
-1
% puts $My_variable
42
% puts $STATUS
50
% puts $VERSION
1.1

The main concern when working with simple functions is SWIG’s treatment of basic datatypes.
This is described next.
Version 1.1, June 23, 1997

SWIG Users Guide

SWIG Basics

32

Integers
SWIG maps the following C datatypes into integers in the target scripting language.

int
short
long
unsigned
signed
unsigned short
unsigned long
unsigned char
signed char
bool

Scripting languages usually only support a single integer type that corresponds to either the int
or long datatype in C. When converting from C, all of the above datatypes are cast into the rep-
resentation used by the target scripting language. Thus, a 16 bit short in C may be converted to a
32 bit integer. When integers are converted from the scripting language back into C, the value
will be cast into the appropriate type. The value will be truncated if it is too large to fit into the
corresponding C datatype. This truncation is not currently checked.

The unsigned char and signed char datatypes are special cases that are treated as integers
by SWIG. Normally, the char datatype is mapped as an ASCII string.

The bool datatype is cast to and from an integer value of 0 and 1.

Some care is in order for large integer values. Most scripting language use 32 bit integers so map-
ping a 64 bit long integer may lead to truncation errors. Similar problems may arise with 32 bit
unsigned integers that may show up as negative numbers. As a rule of thumb, the int datatype
and all variations of char and short datatypes are safe to use. For unsigned int and long
datatypes, you should verify the correct operation of your program after wrapping it with SWIG.

Floating Point
SWIG recognizes the following floating point types :

float
double

Floating point numbers are mapped to and from the natural representation of floats in the target
language. This is almost always a double except in Tcl 7.x which uses character strings. The
rarely used datatype of “long double” is not supported by SWIG.

Character Strings
The char datatype is mapped into a NULL terminated ASCII string with a single character.
When used in a scripting language it will show up as a tiny string containing the character value.
When converting the value back into C, SWIG will take a character string from the scripting lan-
guage and strip off the first character as the char value. Thus if you try to assigned the value
“foo” to a char datatype, it will get the value ‘f’.

The char * datatype is assumed to be a NULL-terminated ASCII string. SWIG maps this into a
Version 1.1, June 23, 1997

SWIG Users Guide

SWIG Basics

33

character string in the target language. SWIG converts character strings in the target language to
NULL terminated strings before passing them into C/C++. It is illegal for these strings to have
embedded NULL bytes although there are ways to work around this problem.

The signed char and unsigned char datatypes are mapped into integer values. The follow-
ing example illustrates the mapping of char datatypes.

%{
#include <stdio.h>
#include <ctype.h>
#include <string.h>
signed char sum(signed char a, signed char b) { return a+b;}
%}

int strcmp(char *, char *);
char toupper(char);
signed char sum(signed char a, signed char b);

A Tcl script using these functions (and the resulting output) might be as follows.

tclsh > strcmp Mike John
1
tclsh > toupper g
G
tclsh > sum 17 -8
9

Variables
SWIG attempts to map C/C++ global variables into scripting language variables. For example:

%module example

double foo;

will result in a scripting language variable that can be used as follows :

Tcl
set foo [3.5] ;# Set foo to 3.5
puts $foo ;# Print the value of foo

Python
cvar.foo = 3.5 ;# Set foo to 3.5
print cvar.foo ;# Print value of foo

Perl
$foo = 3.5; ;# Set foo to 3.5
print $foo,”\n”; ;# Print value of foo

Whenever this “special” variable is used, the underlying C global variable will be accessed. As it
turns out, working with global variables is one of the most tricky aspects of SWIG. Whenever
possible, you should try to avoid the use of globals. Fortunately, most modular programs make
limited (or no) use of globals.
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 34
Constants
Constants can be created using #define, const, or enumerations. Constant expressions are
also allowed. The following interface file shows a few valid constant declarations :

#define I_CONST 5 // An integer constant
#define F_CONST 3.14159 // A Floating point constant
#define S_CONST "hello world" // A string constant
#define NEWLINE '\n' // Character constant
#define MODE DEBUG // Sets MODE to DEBUG.

// DEBUG is assumed to be an
// int unless declared earlier

enum boolean {NO=0, YES=1};
enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,

SEP, OCT, NOV, DEC};
const double PI 3.141592654;
#define F_CONST2 (double) 5 // A floating pointer constant with cast
#define PI_4 PI/4
#define FLAGS 0x04 | 0x08 | 0x40

In #define declarations, the type of a constant is inferred by syntax or can be explicitly set
using a cast. For example, a number with a decimal point is assumed to be floating point. When
no explicit value is available for a constant, SWIG will use the value assigned by the C compiler.
For example, no values are given to the months enumeration, but this is no problem---SWIG will
use whatever the C compiler picks.

The use of constant expressions is allowed, but SWIG does not evaluate them. Rather, it passes
them through to the output file and lets the C compiler perform the final evaluation (SWIG does
perform a limited form of type-checking however).

For enumerations, it is critical that the original enum definition be included somewhere in the
interface file (either in a header file or in the %{,%} block). SWIG only translates the enumera-
tion into code needed to add the constants to a scripting language. It needs the original enumer-
ation declaration to retrieve the correct enum values.

Pointers and complex objects
As we all know, most C programs have much more than just integers, floating point numbers,
and character strings. There may be pointers, arrays, structures, and other objects floating
around. Fortunately, this is usually not a problem for SWIG.

Simple pointers
Pointers to basic C datatypes such as

int *
double ***
char **

can be used freely in an interface file. SWIG encodes pointers into a representation containing the
actual value of the pointer and a string representing the datatype. Thus, the SWIG representation
of the above pointers (in Tcl), might look like the following :
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 35
_10081012_int_p
_1008e124_double_ppp
_f8ac_char_pp

A NULL pointer is represented by the string “NULL” or the value 0 encoded with type informa-
tion.

All pointers are treated as opaque objects by SWIG. A pointer may be returned by a function and
passed around to other C functions as needed. For all practical purposes, the scripting language
interface works in exactly the same way as you would write a C program (well, with a few limi-
tations).

The scripting language representation of a pointer should never be manipulated directly
(although nothing prevents this). SWIG does not normally map pointers into high-level objects
such as associative arrays or lists (for example, it might be desirable to convert an int * into an
list of integers). There are several reasons for this :

• Adding special cases would make SWIG more complicated and difficult to maintain.
• There is not enough information in a C declaration to properly map pointers into higher

level constructs. For example, an int * may indeed be an array of integers, but if it con-
tains one million elements, converting it into a Tcl, Perl, or Python list would probably be
an extremely bad idea.

• By treating all pointers equally, it is easy to know what you’re going to get when you cre-
ate an interface (pointers are treated in a consistent manner).

As it turns out, you can remap any C datatype to behave in new ways so these rules are not set in
stone. Interested readers should look at the chapter on typemaps.

Run time pointer type checking
By allowing pointers to be manipulated interactively in a scripting language, we have effectively
bypassed the type-checker in the C/C++ compiler. By encoding pointer values with a datatype,
SWIG is able to perform run-time type-checking in order to prevent mysterious system crashes
and other anomalies. By default, SWIG uses a strict-type checking model that checks the
datatype of all pointers before passing them to C/C++. However, you can change the handling
of pointers using the -strict option:

-strict 0 No type-checking (living on the edge)
-strict 1 Generate warning messages (somewhat annoying)
-strict 2 Strict type checking (the default)

Strict type checking is the recommended default since is the most reliable and most closely fol-
lows the type checking rules of C. In fact, at this time, the other two modes should be considered
to be outdated SWIG features that are supported, but no longer necessary1.

By default, SWIG allows “NULL” pointers to be passed to C/C++. This has the potential to crash
code and cause other problems if you are not careful. Checks can be placed on certain values to

1. In early versions of SWIG, some users would disable the type-checker to work around type-casting prob-
lems. This is no longer necessary as most type-related problems can be solved using the pointer.i library
file included with SWIG1.1.
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 36
prevent this but this requires the use of typemaps (described in later chapters).

Like C, it should also be noted that functions involving void pointers can accept any kind of
pointer object.

Derived types, structs, and classes
For everything else (structs, classes, arrays, etc...) SWIG applies a very simple rule :

All complex datatypes are pointers

In other words, SWIG manipulates everything else by reference. This model makes sense
because most C/C++ programs make heavy use of pointers and we can use the type-checked
pointer mechanism already present for handling pointers to basic datatypes.

While all of this probably sounds complicated, it’s really quite simple. Suppose you have an
interface file like this :

%module fileio
FILE *fopen(char *, char *);
int fclose(FILE *);
unsigned fread(void *ptr, unsigned size, unsigned nobj, FILE *);
unsigned fwrite(void *ptr, unsigned size, unsigned nobj, FILE *);
void *malloc(int nbytes);
void free(void *);

In this file, SWIG doesn’t know what a FILE is, but it’s used as a pointer, so it doesn’t really mat-
ter what it is. If you wrapped this module into Python, you could use the functions just like you
would expect :

Copy a file
def filecopy(source,target):

f1 = fopen(source,”r”)
f2 = fopen(target,”w”)
buffer = malloc(8192)
nbytes = fread(buffer,8192,1,f1)
while (nbytes > 0):

fwrite(buffer,8192,1,f2)
nbytes = fread(buffer,8192,1,f1)

free(buffer)

In this case f1, f2, and buffer are all opaque objects containing C pointers. It doesn’t matter
what value they contain--our program works just fine without this knowledge.

What happens when SWIG encounters an unknown datatype?
When SWIG encounters an unknown datatype, it automatically assumes that it is some sort of
complex datatype. For example, suppose the following function appeared in a SWIG input file:

void matrix_multiply(Matrix *a, Matrix *b, Matrix *c);

SWIG has no idea what a “Matrix” is so it will assume that you know what you are doing and
map it into a pointer. This makes perfect sense because the underlying C function is using point-
ers in the first place. Unlike C or C++, SWIG does not actually care whether Matrix has been
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 37
previously defined in the interface file or not. While this may sound strange, it makes it possible
for SWIG to generate interfaces from only partial information. In many cases, you may not care
what a Matrix really is as long as you can pass references to one around in the scripting lan-
guage interface. The downside to this relaxed approach is that typos may go completely unde-
tected by SWIG1. You can also end up shooting yourself in the foot, but presumably you’ve
passed your programming safety course if you’ve made it this far.

As a debugging tool, SWIG will report a list of used, but undefined datatypes, if you run it with
the -stat option.

[beazley@guinness SWIG1.1b6]$ swig -stat matrix.i
Making wrappers for Tcl
Wrapped 1 functions
Wrapped 0 variables
Wrapped 0 constants
The following datatypes were used, but undefined.
 Matrix
[beazley@guinness SWIG1.1b6]$

Typedef
typedef can be used to remap datatypes within SWIG. For example :

typedef unsigned int size_t;

This makes SWIG treat size_t like an unsigned int. Use of typedef is fairly critical in most
applications. Without it, SWIG would consider size_t to be a complex object (which would be
incorrectly converted into a pointer).

Getting down to business
So far, you know just about everything you need to know to use SWIG to build interfaces. In fact,
using nothing but basic datatypes and opaque pointers it is possible to build scripting language
interfaces to most kinds of C/C++ packages. However, as the novelty wears off, you will want to
do more. This section describes SWIG’s treatment of more sophsticated issues.

Passing complex datatypes by value
Unfortunately, not all C programs manipulate complex objects by reference. When encountered,
SWIG will transform the corresponding C/C++ declaration to use references instead. For exam-
ple, suppose you had the following function :

double dot_product(Vector a, Vector b);

SWIG will transform this function call into the equivalent of the following :

double wrap_dot_product(Vector *a, Vector *b) {
return dot_product(*a,*b);

}

1. Fortunately, if you make a typo, the C compiler will usually catch it when it tries to compile the SWIG gen-
erated wrapper file.
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 38
In the scripting language, dot_product will now take references to Vectors instead of Vectors,
although you may not notice the change.

Return by value
C functions that return complex datatypes by value are more difficult to handle. Consider the
following function:

Vector cross(Vector v1, Vector v2);

This function is returning a complex object, yet SWIG only likes to work with references. Clearly,
something must be done with the return result, or it will be lost forever. As a result, SWIG trans-
forms this function into the following code :

Vector *wrap_cross(Vector *v1, Vector *v2) {
Vector *result;
result = (Vector *) malloc(sizeof(Vector));
*(result) = cross(*v1,*v2);
return result;

}

or if using C++ :

Vector *wrap_cross(Vector *v1, Vector *v2) {
Vector *result = new Vector(cross(*v1,*v2)); // Uses default copy constructor
return result;

}

SWIG is forced to create a new object and return a reference to it. It is up to the user to delete the
returned object when it is no longer in use. When used improperly, this can lead to memory leaks
and other problems. Personally, I’d rather live with a potential memory leak than forbid the use
of such a function. Needless to say, some care is probably in order (you need to be aware of this
behavior in any case).

Linking to complex variables
When global variables or class members involving complex datatypes are encountered, SWIG
converts them into references. For example, a global variable like this :

Vector unit_i;

gets mapped to a pair of set/get functions like this :

Vector *unit_i_get() {
return &unit_i;

}
Vector *unit_i_set(Vector *value) {

unit_i = *value;
return &unit_i;

}

Returning a reference to the variable makes it accessible like any other object of this type. When
setting the value, we simply make a copy of some other Vector reference. Again some caution is
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 39
in order. A global variable created in this manner will show up as a reference in the target script-
ing language. It would be an extremely bad idea to free or destroy such a reference. Similarly,
one can run into problems when copying complex C++ objects in this manner. Fortunately, in
well-written modular code, excessive use (or abuse) of global variables is rare.

Arrays
The use of arrays in the current version of SWIG is supported, but with caution. If simple arrays
appear, they will be mapped into a pointer representation. Thus, the following declarations :

int foobar(int a[40]);
void grok(char *argv[]);
void transpose(double a[20][20]);

will be processed as if they were declared like this:

int foobar(int *a);
void grok(char **argv);
void transpose(double (*a)[20]);

Multi-dimensional arrays are transformed into a single pointer since a[][] and **a are not the
same thing (even though they can be used in similar ways). Rather, a[][] is mapped to *a,
where *a is the equivalent of &a[0][0]. The reader is encouraged to dust off their C book and
look at the section on arrays before using them with SWIG.

Be aware that use of arrays may cause compiler warnings or errors when compiling SWIG gener-
ated modules. While every attempt has been made to eliminate these problems, handling of
arrays can be somewhat problematic due to the subtle differences between an array and a
pointer.

Creating read-only variables
A read-only variable can be created by using the %readonly directive as shown :

// File : interface.i

int a; // Can read/write
%readonly
int b,c,d // Read only variables
%readwrite
double x,y // read/write

The %readonly directive enables read-only mode until it is explicitly disabled using the
%readwrite directive.

Renaming declarations
Normally, the name of a C function is used as the name of the command added to the target
scripting language. Unfortunately, this name may conflict with a keyword or already existing
function in the scripting language. Naming conflicts can be resolved using the %name directive
as shown :

// interface.i
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 40
%name(my_print) extern void print(char *);
%name(foo) extern int a_really_long_and_annoying_name;

SWIG still calls the correct C functions, but in this case the function print() will really be called
“my_print()” in the scripting language.

A more powerful renaming operation can be performed with the %rename directive as follows :

%rename oldname newname;

%rename applies a renaming operation to all future occurrences of a name. The renaming
applies to functions, variables, class and structure names, member functions, and member data.
For example, if you had two-dozen C++ classes, all with a member function named ‘print’
(which is a keyword in Python), you could rename them all to ‘output’ by specifying :

%rename print output; // Rename all ‘print’ functions to ‘output’

SWIG does not perform any checks to see if the functions it adds are already defined in the target
scripting language. However, if you are careful about namespaces and your use of modules, you
can usually avoid these problems.

Overriding call by reference
SWIG is quite literal in its interpretation of datatypes. If you give it a pointer, it will use pointers.
For example, if you’re trying to call a function in a Fortran library (through its C interface) all
function parameters will have to be passed by reference. Similarly, some C functions may use
pointers in unusual ways. The %val directive can be used to change the calling mechanism for a
C function. For example :

// interface.i
%{
#include <time.h>
%}

typedef long time_t;
time_t time(time_t *t);
struct tm *localtime(%val time_t *t);
char *asctime(struct tm *);

The localtime() function takes a pointer to a time_t value, but we have forced it to take a
value instead in order to match up nicely with the return value of the time() function. When
used in Perl, this allows us to do something like this :

$t = time(0);
$tm = localtime($t); # Note passing $t by value here
print $asctime($tm);

Internally, the %val directive creates a temporary variable. The argument value is stored in this
variable and a function call is made using a pointer to the temporary variable. Of course, if the
function returns a value in this temporary variable, it will be lost forever.

Default/optional arguments
SWIG allows default arguments to be used in both C/C++ code as follows :
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 41
int plot(double x, double y, int color=WHITE);

To specify a default argument, simply specify it the function prototype as shown. SWIG will gen-
erate wrapper code in which the default arguments are optional. For example, this function
could be used in Tcl as follows :

% plot -3.4 7.5 # Use default value
% plot -3.4 7.5 10 # set color to 10 instead

While the ANSI C standard does not specify default arguments, default arguments used in a
SWIG generated interface work with both C and C++.

Pointers to functions
At the moment, the SWIG parser has difficulty handling pointers to functions (a deficiency that
is being corrected). However, having function pointers is useful for managing C callback func-
tions and other things. To properly handle function pointers, it is currently necessary to use
typedef. For example, the function

void do_operation(double (*op)(double,double), double a, double b);

should be handled as follows :

typedef double (*OP_FUNC)(double,double);
void do_operation(OP_FUNC op, double a, double b);

SWIG understands both the typedef declaration and the later function call. It will treat OP_FUNC
just like any other complex datatype. In order for this approach to work, it is necessary that the
typedef declaration be present in the original C code--otherwise, the C compiler will complain. If
you are building a separate interface file to an existing C program and do not want to make
changes to the C source, you can also do the following :

// File : interface.i
%typedef double (*OP_FUNC)(double,double);
double do_operation(OP_FUNC op, double a, double b);

%typedef forces SWIG to generate a typedef in the C output code for you. This would allow
the interface file shown to work with the original unmodified C function declaration.

Constants containing the addresses of C functions can also be created. For example, suppose you
have the following callback functions :

extern double op_add(double a, double b);
extern double op_sub(double a, double b);
extern double op_mul(double a, double b);

The addresses of these functions could be installed as scripting language constants as follows :

// interface.i
typedef double (*OP_FUNC)(double,double);
...
const OP_FUNC ADD = op_add;
const OP_FUNC SUB = op_sub;
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 42
const OP_FUNC MUL = op_mul;
...

When wrapped, this would create the constants ADD,SUB, and MUL containing the addresses of C
callback functions. We could then pass these to other C functions expecting such function point-
ers as arguments as shown (for Tcl) :

%do_operation $ADD 3 4
7
%

Structures, unions, and object oriented C programming
If SWIG encounters the definition of a structure or union, it will create a set of accessor functions
for you. While SWIG does not need structure definitions to build an interface, providing defini-
tions make it possible to access structure members. The accessor functions generated by SWIG
simply take a pointer to an object and allow access to an individual member. For example, the
declaration :

struct Vector {
double x,y,z;

}

gets mapped into the following set of accessor functions :

double Vector_x_get(Vector *obj) {
return obj->x;

}
double Vector_y_get(Vector *obj) {

return obj->y;
}
double Vector_z_get(Vector *obj) {

return obj->z;
}
double Vector_x_set(Vector *obj, double value) {

obj->x = value;
return value;

}
double Vector_y_set(Vector *obj, double value) {

obj->y = value;
return value;

}
double Vector_z_set(Vector *obj, double value) {

obj->z = value;
return value;

}

Typedef and structures
SWIG supports the following construct which is quite common in C programs :

typedef struct {
double x,y,z;

} Vector;
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 43
When encountered, SWIG will assume that the name of the object is ‘Vector’ and create accessor
functions like before. If two different names are used like this :

typedef struct vector_struct {
double x,y,z;

} Vector;

the name ‘Vector’ will still be used instead of “vector_struct”.

Character strings and structures
Structures involving character strings require some care. SWIG assumes that all members of type
char * have been dynamically allocated using malloc() and that they are NULL-terminated
ASCII strings. When such a member is modified, the previously contents will be released, and
the new contents allocated. For example :

%module mymodule
...
struct Foo {

char *name;
...

}

This results in the following accessor functions :

char *Foo_name_get(Foo *obj) {
return Foo->name;

}

char *Foo_name_set(Foo *obj, char *c) {
if (obj->name) free(obj->name);
obj->name = (char *) malloc(strlen(c)+1);
strcpy(obj->name,c);
return obj->name;

}

This seems to work most of the time, but occasionally it’s not always what you want. Typemaps
can be used to change this behavior if necessary.

Array members
Arrays may appear as the members of structures, but they will be read-only. SWIG will write an
accessor function that returns the pointer to the first element of the array, but will not write a
function to change the array itself. This restriction is due to the fact that C won’t let us change the
“value” of an array. When this situation is detected, SWIG generates a warning message such as
the following :

interface.i : Line 116. Warning. Array member will be read-only

To eliminate the warning message, typemaps can be used, but this is discussed in a later chapter
(and best reserved for experienced users). Otherwise, if you get this warning, it may be harmless.

C constructors and destructors
While not part of the C language, it is usually useful to have some mechanism for creating and
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 44
destroying an object. You can, of course, do this yourself by making an appropriate call to mal-
loc(), but SWIG can make such functions for you automatically if you use C++ syntax like this :

%module mymodule
...
struct Vector {

Vector(); // Tell SWIG to create a C constructor
~Vector(); // Tell SWIG to create a C destructor
double x,y,z;

}

When used with C code, SWIG will create two additional functions like this :

Vector *new_Vector() {
return (Vector *) malloc(sizeof(Vector));

}

void delete_Vector(Vector *v) {
free(v);

}

While C knows nothing about constructors and destructors, SWIG does---and it can automati-
cally create some for you if you want. This only applies to C code--handling of C++ is handled
differently.

As an alternative to explicitly defining constructors and destructors, SWIG can also automati-
cally generate them using either a command line option or a pragma. For example :

swig -make_default example.i

or

%module foo
...
%pragma make_default // Make default constructors
... declarations ...
%pragma no_default // Disable default constructors

This works with both C and C++.

Adding member functions to C structures
Many scripting languages provide a mechanism for creating classes and supporting object ori-
ented programming. From a C standpoint, object oriented programming really just boils down to
the process of attaching functions to structures. These functions typically operate on the struc-
ture (or object) in some way or another. While there is a natural mapping of C++ to such a
scheme, there is no direct mechanism for utilizing it with C code. However, SWIG provides a
special %addmethods directive that makes it possible to attach methods to C structures for pur-
poses of building an object oriented scripting language interface. Suppose you have a C header
file with the following declaration :

/* file : vector.h */
...
typedef struct {
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 45
double x,y,z;
} Vector;

You can make a Vector look alot like a class by doing the following in an interface file :

// file : vector.i
%module mymodule
%{
#include “vector.h”
%}

%include vector.h // Just grab original C header file
%addmethods Vector { // Attach these functions to struct Vector

Vector(double x, double y, double z) {
Vector *v;
v = (Vector *v) malloc(sizeof(Vector));
v->x = x;
v->y = y;
v->z = z;
return v;

}
~Vector() {

free(self);
}
double magnitude() {

return sqrt(self->x*self->x+self->y*self->y+self->z*self->z);
}
void print() {

printf(“Vector [%g, %g, %g]\n”, self->x,self->y,self->z);
}

};

Now, when used with shadow classes in Python, you can do things like this :

>>> v = Vector(3,4,0) # Create a new vector
>>> print v.magnitude() # Print magnitude
5.0
>>> v.print() # Print it out
[3, 4, 0]
>>> del v # Destroy it

The %addmethods directive can also be used in the definition of the Vector structure. For exam-
ple:

// file : vector.i
%module mymodule
%{
#include “vector.h”
%}

typedef struct {
double x,y,z;
%addmethods {

Vector(double x, double y, double z) { ... }
~Vector() { ... }
...

}
} Vector;
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 46
Finally, %addmethods can be used to access externally written functions provided they follow
the naming convention used in this example :

/* File : vector.c */
/* Vector methods */
#include “vector.h”
Vector *new_Vector(double x, double y, double z) {

Vector *v;
v = (Vector *) malloc(sizeof(Vector));
v->x = x;
v->y = y;
v->z = z;
return v;

}
void delete_Vector(Vector *v) {

free(v);
}

double Vector_magnitude(Vector *v) {
return sqrt(v->x*v->x+v->y*v->y+v->z*v->z);

}

// File : vector.i
// Interface file
%module mymodule
%{
#include “vector.h”
%}

typedef struct {
double x,y,z;
%addmethods {

double magnitude(); // This will call Vector_magnitude
...

}
} Vector;

So why bother with all of this %addmethods business? In short, you can use it to make some
pretty cool ‘object oriented’ scripting language interfaces to C programs without having to
rewrite anything in C++.

Nested structures
Occasionally, a C program will involve structures like this :

typedef struct Object {
int objtype;
union {

int ivalue;
double dvalue;
char *strvalue;
void *ptrvalue;

} intRep;
} Object;

When SWIG encounters this, it performs a structure splitting operation that transforms the dec-
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 47
laration into the equivalent of the following:

typedef union {
int ivalue;
double dvalue;
char *strvalue;
void *ptrvalue;

} Object_intRep;

typedef struct Object {
int objType;
Object_intRep intRep;

} Object;

SWIG will create an Object_intRep structure for use inside the interface file. Accessor func-
tions will be created for both structures. In this case, functions like this would be created :

Object_intRep *Object_intRep_get(Object *o) {
return (Object_intRep *) &o->intRep;

}
int Object_intRep_ivalue_get(Object_intRep *o) {

return o->ivalue;
}
int Object_intRep_ivalue_set(Object_intRep *o, int value) {

return (o->ivalue = value);
}
double Object_intRep_dvalue_get(Object_intRep *o) {

return o->dvalue;
}
... etc ...

Is it hairy? You bet. Does it work? Well, surprisingly yes. When used with Python and Perl5
shadow classes, it’s even possible to access the nested members just like you expect :

Perl5 script for accessing nested member
$o = CreateObject(); # Create an object somehow
$o->{intRep}->{ivalue} = 7 # Change value of o.intRep.ivalue

If you’ve got a bunch of nested structure declarations, it is certainly advisable to check them out
after running SWIG. However, there is a good chance that they will work. If not, you can always
remove the nested structure declaration and write your own set of accessor functions.

Other things to note about structures
SWIG doesn’t care if the definition of a structure exactly matches that used in the underlying C
code (except in the case of nested structures). For this reason, there are no problems omitting
problematic members or simply omitting the structure definition altogether. If you are happy
simply passing pointers around, this can be done without ever giving SWIG a structure defini-
tion.

It is also important to note that most language modules may choose to build a more advanced
interface. You may never use the low-level interface described here, although most of SWIG’s
language modules use it in some way or another.
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 48
C++ support
SWIG’s support for C++ is an extension of the support for C functions, variables, and structures.
However, SWIG only supports a subset of the C++ language. It has never been my goal to write
a full C++ compiler or to turn scripting languages into some sort of weird pseudo C++ inter-
preter (considering how hard it is to write a C++ compiler, I’m not sure this would even be feasi-
ble anyways).

This section describes SWIG’s low-level access to C++ declarations. In many instances, this low-
level interface may be hidden by shadow classes or an alternative calling mechanism (this is usu-
ally language dependent and is described in detail in later chapters).

Supported C++ features
SWIG supports the following C++ features :

• Simple class definitions
• Constructors and destructors
• Virtual functions
• Public inheritance (including multiple inheritance)
• Static functions
• References

The following C++ features are not currently supported :

• Operator overloading
• Function overloading (without renaming)
• Templates (anything that would be defined using the ‘template’ keyword).
• Friends
• Nested classes
• Namespaces
• Pointers to member functions.

Since SWIG’s C++ support is a “work in progress”, many of these limitations may be lifted in
future releases. In particular, function overloading and nested classes, may be supported in the
future. Operator overloading and templates are unlikely to be supported anytime in the near
future, but I’m not going to rule out the possibility in later releases.

C++ example
The following code shows a SWIG interface file for a simple C++ class.

%module list
%{
#include "list.h"
%}

// Very simple C++ example for linked list

class List {
public:
 List();
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 49
 ~List();
 int search(char *value);
 void insert(char *);
 void remove(char *);
 char *get(int n);
 int length;
static void print(List *l);
};

When compiling C++ code, it is critical that SWIG be called with the ‘-c++’ option. This changes
the way a number of critical features are handled with respect to differences between C and C++.
It also enables the detection of C++ keywords. Without the -c++ flag, SWIG will either issue a
warning or a large number of syntax errors if it encounters any C++ code in an interface file.

Constructors and destructors
C++ constructors and destructors are translated into accessor functions like the following :

List * new_List(void) {
return new List;

}
void delete_List(List *l) {

delete l;
}

If the original C++ class does not have any constructors or destructors, putting constructors and
destructors in the SWIG interface file will cause SWIG to generate wrappers for the default con-
structor and destructor of an object.

Member functions
Member functions are translated into accessor functions like this :

int List_search(List *obj, char *value) {
return obj->search(value);

}

Virtual member functions are treated in an identical manner since the C++ compiler takes care of
this for us automatically.

Static members
Static member functions are called directly without making any additional C wrappers. For
example, the static member function print(List *l) will simply be called as
List::print(List *l) in the resulting wrapper code.

Member data
Member data is handled in exactly the same manner as used for C structures. A pair of accessor
functions will be created. For example :

int List_length_get(List *obj) {
return obj->length;

}
int List_length_set(List *obj, int value) {
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 50
obj->length = value;
return value;

}

A read-only member can be created using the %readonly and %readwrite directives. For
example, we probably wouldn’t want the user to change the length of a list so we could do the
following to make the value available, but read-only.

class List {
public:
...
%readonly

int length;
%readwrite
...
};

Protection
SWIG can only wrap class members that are declared public. Anything specified in a private or
protected section will simply be ignored. To simplify your interface file, you may want to con-
sider eliminating all private and protected declarations (if you’ve copied a C++ header file for
example).

By default, members of a class definition are assumed to be private until you explicitly give a
‘public:’ declaration (This is the same convention used by C++).

Enums and constants
Enumerations and constants placed in a class definition are mapped into constants with the
classname as a prefix. For example :

class Swig {
public:

enum {ALE, LAGER, PORTER, STOUT};
};

Generates the following set of constants in the target scripting language :

Swig_ALE = Swig::ALE
Swig_LAGER = Swig::LAGER
Swig_PORTER = Swig::PORTER
Swig_STOUT = Swig::STOUT

Members declared as const are wrapped in a similar manner.

References
C++ references are supported, but SWIG will treat them as pointers. For example, a declaration
like this :

class Foo {
public:

double bar(double &a);
}

Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 51
will be accessed using a function like this :

double Foo_bar(Foo *obj, double *a) {
obj->bar(*a);

}

Functions returning a reference will be mapped into functions returning pointers.

Inheritance
SWIG supports basic C++ public inheritance of classes and allows both single and multiple
inheritance. The SWIG type-checker knows about the relationship between base and derived
classes and will allow pointers to any object of a derived class to be used in functions of a base
class. The type-checker properly casts pointer values and is safe to use with multiple inheritance.
SWIG does not support private or protected inheritance (it will be parsed, but ignored).

The following example shows how SWIG handles inheritance. For clarity, the full C++ code has
been omitted.

// shapes.i
%module shapes
%{
#include “shapes.h”
%}

class Shape {
public:

virtual double area() = 0;
virtual double perimeter() = 0;
void set_location(double x, double y);

};
class Circle : public Shape {
public:

Circle(double radius);
~Circle();
double area();
double perimeter();

};
class Square : public Shape {
public:

Square(double size);
~Square();
double area();
double perimeter();

}

When wrapped into Perl5, we can now perform the following operations :

beazley@slack% perl5.003
use shapes;
$circle = shapes::new_Circle(7);
$square = shapes::new_Square(10);
print shapes::Circle_area($circle),”\n”;
Notice use of base class below
print shapes::Shape_area($circle),”\n”;
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 52
print shapes::Shape_area($square),”\n”;
shapes::Shape_set_location($square,2,-3);
print shapes::Shape_perimeter($square),”\n”;
<ctrl-d>
153.93804004599999757
153.93804004599999757
100.00000000000000000
40.00000000000000000

In our example, we have created Circle and Square objects. We can call member functions on
each object by making calls to Circle_area, Square_area, and so on. However, we can can
accomplish the same thing by simply using the Shape_area function on either object.

Templates
SWIG does not support template definitions--that is, it does not support anything that would be
declared in C++ using the ‘template’ keyword. If a template definition is found, SWIG will
issue a warning message and attempt to ignore the contents of the entire declaration. For exam-
ple, a template class such as the following would be ignored by SWIG :

// File : list.h
#define MAXITEMS 100
template<class T> class List { // Entire class is ignored by SWIG
private:
 T *data;
 int nitems;
public:
 List() {
 data = new T [MAXITEMS];
 nitems = 0;
 }
 ~List() {
 delete [] data;
 };
 void append(T obj) {
 if (nitems < MAXITEMS) {
 data[nitems++] = obj;
 }
 }
 int length() {
 return nitems;
 }
 T get(int n) {
 return data[n];
 }
};

However, SWIG can support instantiations of a template and types involving templates. For
example, the following interface file would be legal :

// SWIG interface involving a template
%module example
%{
#include “list.h” // Get Template definition
%}

// Now a function involving templates
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 53
extern void PrintData(List<double> &l);

The type “List<double>” becomes the datatype for the function parameter. In, Python it
might appear like this :

>>> print cl
_80a2df8_List<double>_p
>>>

To create specific objects, you may need to supply helper functions such as the following :

%inline %{
// Helper function to create a List<double>
List<double> *new_DoubleList() {

return new List<double>;
}
%}

Specific templates can also be wrapped in a clever way using typedef. For example, the fol-
lowing would also work :

%module example
%{
#include “list.h”
typedef List<double> DoubleList;
%}

class DoubleList {
public:

DoubleList();
~DoubleList();
void append(double);
int length();
double get(int n);

};

In this case, SWIG thinks that there is a class “DoubleList” with the methods supplied. It gen-
erates the appropriate code and everything works like you would expect (of course, in reality
there is no such class). When the SWIG module is compiled, all of the methods get supplied by
the original template class. A key thing to keep in mind when working with templates is that
SWIG can only handle particular instantiations of a template (such as a list of double). More gen-
eral support is not yet provided (but may be added someday).

Renaming
C++ member functions and data can be renamed with the %name directive. The %name directive
only replaces the member function name. For example :

class List {
public:
 List();
%name(ListSize) List(int maxsize);
 ~List();
 int search(char *value);
%name(find) void insert(char *);
%name(delete) void remove(char *);
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 54
 char *get(int n);
 int length;
static void print(List *l);
};

This will create the functions List_find, List_delete, and a function named
new_ListSize for the overloaded constructor.

The %name directive can be applied to all members including constructors, destructors, static
functions, data members, and enumeration values.

The class name prefix can be changed by specifying

%name(newname) class List {
...
}

Adding new methods
New methods can be added to a class using the %addmethods directive. This directive is prima-
rily used in conjunction with shadow classes to add additional functionality to an existing class.
For example :

%module vector
%{
#include “vector.h”
%}

class Vector {
public:

double x,y,z;
Vector();
~Vector();
... bunch of C++ methods ...
%addmethods {

char *__str__() {
static char temp[256];
sprintf(temp,”[%g, %g, %g]”, v->x,v->y,v->z);
return &temp[0];

}
}

};

This code adds a __str__ method to our class for producing a string representation of the
object. In Python, such a method would allow us to print the value of an object using the print
command.

>>>
>>> v = Vector();
>>> v.x = 3
>>> v.y = 4
>>> v.z = 0
>>> print(v)
[3.0, 4.0, 0.0]
>>>
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 55
The %addmethods directive follows all of the same conventions as its use with C structures.

Partial class definitions
Since SWIG is still somewhat limited in its support of C++, it may be necessary to only use par-
tial class information in an interface file. This should not present a problem as SWIG does not
need the exact C++ specification. As a general rule, you should strip all classes of operator over-
loading, friends, and other declarations before giving them to SWIG (although SWIG will gener-
ate only warnings for most of these things).

As a rule of thumb, running SWIG on raw C++ header or source files is currently discouraged.
Given the complexity of C++ parsing and limitations in SWIG’s parser it will still take some time
for SWIG’s parser to evolve to a point of being able to safely handle most raw C++ files.

SWIG, C++, and the Legislation of Morality
As languages go, C++ is quite possibly one of the most immense and complicated languages
ever devised. It is certainly a far cry from the somewhat minimalistic nature of C. Many parts of
C++ are designed to build large programs that are “safe” and “reliable.” However, as a result, it
is possible for developers to overload operators, implement smart pointers, and do all sorts of
other insane things (like expression templates). As far as SWIG is concerned, the primary goal is
attaching to such systems and providing a scripting language interface. There are many features
of C++ that I would not have the slightest idea how to support in SWIG (most kinds of templates
for example). There are other C++ idioms that may be unsafe to use with SWIG. For example, if
one implements “smart” pointers, how would they actually interact with the pointer mechanism
used by SWIG?

Needless to say, handling all of the possible cases is probably impossible. SWIG is certainly not
guaranteed to work with every conceivable type of C++ program (especially those that use C++
in a maximal manner). Nor is SWIG claiming to build C++ interfaces in a completely “safe” man-
ner. The bottom line is that effective use of C++ with SWIG requires that you know what you’re
doing and that you have a certain level of “moral flexibility” when it comes to the issue of build-
ing a useful scripting language interface.

The future of C++ and SWIG
SWIG’s support of C++ is best described as an ongoing project. It will probably remain evolu-
tionary in nature for the foreseeable future. In the short term, work is already underway for sup-
porting nested classes and function overloading. As always, these developments will take time.
Feedback and contributions are always welcome.

Objective-C
One of SWIG’s most recent additions is support for Objective-C parsing. This is currently an
experimental feature that may be improved in future releases.

Objective-C support is built using the same approach as used for C++ parsing. Objective-C inter-
face definitions are converted into a collection of ANSI C accessor functions. These accessor func-
tions are then wrapped by SWIG and turned into an interface.

To enable Objective-C parsing, SWIG should be given the -objc option (this option may be used
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 56
in conjunction with the -c++ option if using Objective-C++). It may also be helpful to use the -o
option to give the output file the .m suffix needed by many Objective-C compilers. For example :

% swig -objc -o example_wrap.m example.i

Objective-C interfaces should also include the file ‘objc.i’ as this contains important defini-
tions that are common to most Objective-C programs.

Objective-C Example
The following code shows a SWIG interface file for a simple Objective-C class :

%module list
%{
#import “list.h”
%}
%include objc.i
// Very simple list class
@interface List : Object {
 int nitems; // Number of items in the list
 int maxitems; // Maximum number of items
 id *items; // Array holding the items
}
//------------------------- List methods --------------------------

// Create a new list
+ new;

// Destroy the list
- free;

// Copy a list
- copy;

// Append a new item to the list
- (void) append: (id) item;

// Insert an item in the list
- (void) insert: (id) item : (int) pos;

// Delete an item from the list
- remove: (int) pos;

// Get an item from the list
- get: (int) i;

// Find an item in the list and return its index
- (int) index: obj;

// Get length of the list
- (int) len;

// Print out a list (Class method)
+ (void) print: (List *) l;

@end
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 57
Constructors and destructors
By default, SWIG assumes that the methods “new” and “free” correspond to constructors and
destructors. These functions are translated into the following accessor functions :

List *new_List(void) {
return (List *) [List new];

}
void delete_List(List *l) {

[l free];
}

If the original Objective-C class does not have any constructors or destructors, putting them in
the interface file will cause SWIG to generate wrappers for a default constructor and destructor
(assumed to be defined in the object’s base-class).

If your Objective-C program uses a different naming scheme for constructors and destructors,
you can tell SWIG about it using the following directive :

%pragma objc_new = “create” // Change constructor to ‘create’
%pragma objc_delete = “destroy” // Change destructor to ‘destroy’

Instance methods
Instance methods are converted into accessor functions like this :

void List_append(List *l, id item) {
[l append : item];

}

Class methods
Class methods are translated into the following access function :

void List_print(List *l) {
[List print : l];

}

Member data
Member data is handled in the same manner as for C++ with accessor functions being produced
for getting and setting the value. By default, all data members of an Objective-C object are pri-
vate unless explicitly declared @public.

Protection
SWIG can only wrap data members that are declared @public. Other protection levels are
ignored.

The use of id
The datatype ‘id’ assumes the same role in SWIG as it does with Objective-C. A function operat-
ing on an ‘id’ will accept any Object type (works kind of like void *). All methods with no
explicit return value are also assumed to return an ‘id’.
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 58
Inheritance
Essentially all Objective-C classes will inherit from a baseclass Object. If undefined, SWIG will
generate a warning, but other function properly. A missing baseclass has no effect on the wrap-
per code or the operation of the resulting module. Really, the only side effect of a missing base
class is that you will not be able to execute base-class methods from the scripting interface.
Objective-C does not support multiple inheritance.

Referring to other classes
The @class declaration can be used to refer to other classes. SWIG uses this in certain instances
to make sure wrapper code is generated correctly.

Categories
Categories provide a mechanism for adding new methods to existing Objective-C classes. SWIG
correctly parses categories and attaches the methods to the wrappers created for the original
class. For example :

%module example
%{
#import “foo.h”
%}

// Sample use of a category in an interface
@interface Foo (CategoryName)
// Method declarations
-bar : (id) i;
@end

Implementations and Protocols
SWIG currently ignores all declarations found inside an @implementation or @protocol sec-
tion. Support for this may be added in future releases.

Although SWIG ignores protocols, protocol type-specifiers may be used. For example, these are
legal declarations :

%module example

%interface Foo : Object <proto1, proto2> {

}
// Methods
- Bar : (id <proto1,proto2>) i;
@end

SWIG will carry the protocol lists through the code generation process so the resulting wrapper
code compiles without warnings.

Renaming
Objective-C members can be renamed using the %name() directive as in :

@interface List : Object {
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 59
@public
%name(size) int length; // Rename length to size
}

+ new;
- free;
%name(add) -(void) append: (id) item; // Rename append to add
@end

Adding new methods
New methods can be added to a class using the %addmethods directive. This is primarily used
with shadow classes to add additional functionality to a class. For example :

@interface List : Object {
}
... bunch of Objective-C methods ...
%addmethods {

- (void) output {
... code to output a list ...

}
}
@end

%addmethods works in exactly the same manner as it does for C and C++ (except that Objec-
tive-C syntax is allowed). Consult those sections for more details.

Other issues
Objective-C is dynamically typed while SWIG tends to enforce a type-checking model on all of
its pointer values. This mismatch could create operational problems with Objective-C code in the
form of SWIG type errors. One solution to this (although perhaps not a good one) is to use the
SWIG pointer library in conjunction with Objective-C. The pointer library provides simple func-
tions for casting pointer types and manipulating values.

Certain aspects of Objective-C are not currently supported (protocols for instance). These limita-
tions may be lifted in future releases.

Conditional compilation
SWIG does not run the C preprocessor, but it does support conditional compilation of interface
files in a manner similar to the C preprocessor. This can be done by placed #ifdef, #ifndef,
#if, #else, #elif, and #endif directives in your interface file. These directives can be safely
nested. This allows one to conditionally compile out troublesome C/C++ code if necessary. For
example, the following file can serve as both a C header file and a SWIG interface file :

#ifdef SWIG
%module mymodule
%{
#include “header.h”
%}

%include wish.i
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 60
#endif

... normal C declarations here ...

Similarly, conditional compilation can be used to customize an interface. The following interface
file can be used to build a Perl5 module that works with either static or dynamic linking :

%module mymodule
%{
#include “header.h”
%}

... Declarations ...

#ifdef STATIC
%include perlmain.i // Include code for static linking
#endif

However, it is not safe to use conditional compilation in the middle of a declaration. For example
:

double foo(
#ifdef ANSI_ARGS
double a, double b
#endif
);

This fails because the SWIG parser is not equipped to handle conditional compilation directives
in an arbitrary location (like the C preprocessor). For files that make heavy use of the C prepro-
cessor like this, it may be better to run the header file through the C preprocessor and use the
output as the input to SWIG.

Defining symbols
To define symbols, you can use the -D option as in :

swig -perl5 -static -DSTATIC interface.i

Symbols can also be defined using #define with no arguments. For example :

%module mymodule
#define STATIC

... etc ...

For the purposes of conditional compilation, one should not assign values to symbols. If this is
done, SWIG interprets the #define as providing the definition of a scripting language constant.

The #if directive
The #if directive can only be used in the following context :

#if defined(SYMBOL)
...
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 61
#elif !defined(OTHERSYMBOL)
...
#endif

The C preprocessor version supports any constant integral expression as an argument to #if,
but SWIG does not yet contain an expression evaluator so this is not currently supported. As a
result, declarations such as the following don’t yet work :

#if (defined(foo) || defined(bar))
...
#endif

Predefined Symbols
One or more of the following symbols will be defined by SWIG when it is processing an interface
file :

SWIG Always defined when SWIG is processing a file
SWIGTCL Defined when using Tcl
SWIGTCL8 Defined when using Tcl8.0
SWIGPERL Defined when using Perl
SWIGPERL4 Defined when using Perl4
SWIGPERL5 Defined when using Perl5
SWIGPYTHON Defined when using Python
SWIGGUILE Defined when using Guile
SWIGWIN Defined when running SWIG under Windows
SWIGMAC Defined when running SWIG on the Macintosh

Interface files can look at these symbols as necessary to change the way in which an interface is
generated or to mix SWIG directives with C code. These symbols are also defined within the C
code generated by SWIG (except for the symbol ‘SWIG’ which is only defined within the SWIG
compiler).

Code Insertion
Sometimes it is necessary to insert special code into the resulting wrapper file generated by
SWIG. For example, you may want to include additional C code to perform initialization or
other operations. There are four ways to insert code, but it’s useful to know how the output of
SWIG is structured first.

The output of SWIG
SWIG creates a single C source file containing wrapper functions, initialization code, and sup-
port code. The structure of this file is as follows :
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 62
The headers portion typically contains header files, supporting code, helper functions, and for-
ward declarations. If you look at it, you’ll usually find a hideous mess since this also contains the
SWIG run-time pointer type-checker and internal functions used by the wrapper functions. The
“wrapper” portion of the output contains all of the wrapper functions. Finally, the initialization
function is a single C function that is created to initialize your module when it is loaded.

Code blocks
A code block is enclosed by a %{, %} and is used to insert code into the header portion of the
resulting wrapper file. Everything in the block is copied verbatim into the output file and will
appear before any generated wrapper functions. Most SWIG input files have at least one code
block that is normally used to include header files and supporting C code. Additional code
blocks may be placed anywhere in a SWIG file as needed.

%module mymodule
%{
#include “my_header.h”
%}

... Declare functions here
%{

... Include Tcl_AppInit() function here ...

%}

Code blocks are also typically used to write “helper” functions. These are functions that are used
specifically for the purpose of building an interface and are generally not visible to the normal C
program. For example :

%{

/* Create a new vector */
static Vector *new_Vector() {

return (Vector *) malloc(sizeof(Vector));
}

%}

// Now wrap it
Vector *new_Vector();

Headers

Wrapper Functions

Initialization Function
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 63
Inlined code blocks
Because the process of writing helper functions is fairly common, there is a special inlined form
of code block that is used as follows :

%inline %{
/* Create a new vector */
Vector *new_Vector() {

return (Vector *) malloc(sizeof(Vector));
}
%}

The %inline directive inserts all of the code that follows verbatim into the header portion of an
interface file. The code is then fed into the SWIG parser and turned into an interface. Thus, the
above example creates a new command new_Vector using only one declaration. Since the code
inside an %inline %{ ... %} block is given to both the C compiler and SWIG, it is illegal to
include any SWIG directives inside the %{ ... %} block.

Initialization blocks
Code may also be inserted using an initialization block, as shown below :

%init %{

init_variables();
%}

This code is inserted directly into SWIG’s initialization function. You can use it to perform
additional initialization and operations. Since this code is inserted directly into another func-
tion, it should not declare functions or include header files. Primarily this can be used to add
callouts to widgets and other packages that might also need to be initialized when your exten-
sion is loaded.

Wrapper code blocks
Code may be inserted in the wrapper code section of an output file using the %wrapper direc-
tive as shown :

%wrapper %{
... a bunch of code ...

%}

This directive, for almost all practical purposes, is identical to just using a %{,%} block, but may
be required for more sophisticated applications. It is mainly only used for advanced features in
the SWIG library. As a general rule, you should avoid using this directive unless you absolutely
know what you are doing.

A general interface building strategy
This section describes the general approach for building interface with SWIG. The specifics
related to a particular scripting language are found in later chapters.
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 64
Preparing a C program for SWIG
SWIG doesn’t require modifications to your C code, but if you feed it a collection of raw C
header files or source code, the results might not be what you expect---in fact, they might be
awful. Here’s a series of steps you can follow to make an interface for a C program :

• Identify the functions that you want to wrap. It’s probably not necessary to access every
single function in a C program--thus, a little forethought can dramatically simplify the
resulting scripting language interface. C header files are particularly good source for
finding things to wrap.

• Create a new interface file to describe the scripting language interface to your program.
• Copy the appropriate declarations into the interface file or use SWIG’s %include direc-

tive to process an entire C source/header file. Either way, this step is fairly easy.
• Make sure everything in the interface file uses ANSI C/C++syntax.
• Check to make sure there aren’t any functions involving function pointers, or variable

length arguments since SWIG doesn’t like these very much.
• Eliminate unnecessary C preprocessor directives. SWIG will probably remove most of

them, but better safe than sorry. Remember, SWIG does not run the C preprocessor.
• Make sure all necessary ‘typedef’ declarations and type-information is available in the

interface file.
• If your program has a main() function, you may need to rename it (read on).
• Run SWIG and compile.

While this may sound complicated, the process turns out to be relatively easy in practice--for
example, making an interface to the entire OpenGL library only takes about 5-10 minutes.

In the process of building an interface, you are encouraged to use SWIG to find problematic dec-
larations and specifications. SWIG will report syntax errors and other problems along with the
associated file and line number.

The SWIG interface file
The preferred method of using SWIG is to generate separate interface file. Suppose you have the
following C header file :

/* File : header.h */

#include <stdio.h>
#include <math.h>

extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

A typical SWIG interface file for this header file would look like the following :

/* File : interface.i */
%module mymodule
%{
#include “header.h”
%}
extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 65
Of course, in this case, our header file is pretty simple so we could have made an interface file
like this as well:

/* File : interface.i */
%module mymodule
%include header.h

Naturally, your mileage may vary.

Why use separate interface files?
While SWIG can parse many header files, it is more common to write a special .i file defining
the interface to a package. There are several reasons for doing this :

• It is rarely necessary to access every single function in a large package. Many C functions
might have little or no use in a scripted environment. Therfore, why wrap them?

• Separate interface files provide an opportunity to provide more precise rules about how
an interface is to be constructed.

• Interface files can provide structure and organization. For example , you can break the
interface up into sections, provide documentation, and do other things that you might
not normally do with an ordinary .h file.

• SWIG can’t parse certain definitions that appear in header files. Having a separate file
allows you to eliminate or work around these problems.

• Interface files provide a precise definition of what the interface is. Users wanting to
extend the system can go to the interface file and immediately see what is available with-
out having to dig it out of header files.

Getting the right header files
Sometimes, it is necessary to use certain header files in order for the code generated by SWIG to
compile properly. You can have SWIG include certain header files by using a %{,%} block as fol-
lows :

%module graphics
%{
#include <GL/gl.h>
#include <GL/glu.h>
%}

// Put rest of declarations here
...

What to do with main()
If your program defines a main() function, you may need to get rid of it or rename it in order to
use a scripting language. Most scripting languages define their own main() procedure that
must be called instead. main() also makes no sense when working with dynamic loading. There
are a few approaches to solving the main() conflict :

• Get rid of main() entirely. This is the brute force approach.
• Rename main() to something else. You can do this by compiling your C program with

an option like -Dmain=oldmain.
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 66
• Use conditional compilation to only include main() when not using a scripting lan-
guage.

Getting rid of main() may cause potential initialization problems of a program. To handle this
problem, you may consider writing a special function called program_init() that initializes
your program upon startup. This function could then be called either from the scripting lan-
guage as the first operation, or when the SWIG generated module is loaded.

As a general note, many C programs only use the main() function to parse command line
options and to set parameters. However, by using a scripting language, you are probably trying
to create a program that is more interactive. In many cases, the old main() program can be com-
pletely replaced by a Perl, Python, or Tcl script.

Working with the C preprocessor
If you have a header file that makes heavy use of macros and C preprocessor directives, it may be
useful to run it through the C preprocessor first. This can usually be done by running the C com-
piler with the -E option. The output will be completely hideous, but macros and other preproces-
sor directives should now be expanded as needed. If you want to wrap a C preprocessor macro
with SWIG, this can be done by giving a function declaration with the same name and usage as
the macro. When writing the macro as a function declaration, you are providing SWIG with
type-information--without that, SWIG would be unable to produce any sort of wrapper code.

How to cope with C++
Given the complexity of C++, it will almost always be necessary to build a special interface file
containing suitably edited C++ declarations. If you are working with a system involving 400
header files, this process will not be trivial. Perhaps the best word of advice is to think hard
about what you want this interface to be. Also, is it absolutely critical to wrap every single func-
tion in a C++ program? SWIG’s support of C++ will improve with time, but I’ll be the first to
admit that SWIG works much better with pure ANSI C code when it comes to large packages.

How to avoid creating the interface from hell
SWIG makes it pretty easy to build a big interface really fast. In fact, if you apply it to a large
enough package, you’ll find yourself with a rather large chunk of code being produced in the
resulting wrapper file. To give you an idea, wrapping a 1000 line C header file with a large num-
ber of structure declarations may result in a wrapper file containing 20,000-30,000 lines of code. I
can only imagine what wrapping a huge C++ class hierarchy would generate. Here’s a few rules
of thumb for making smaller interfaces :

• Ask yourself if you really need to access particular functions. It is usually not necessary
to wrap every single function in a package. In fact, you probably only need a relatively
small subset.

• SWIG does not require structure definitions to operate. If you are never going to access
the members of a structure, don’t wrap the structure definition.

• Eliminate unneeded members of C++ classes.
• Think about the problem at hand. If you are only using a subset of some library, there is

no need to wrap the whole thing.
• Write support or helper functions to simplify common operations. Some C functions may

not be easy to use in a scripting language environment. You might consider writing an
Version 1.1, June 23, 1997

SWIG Users Guide SWIG Basics 67
alternative version and wrapping that instead.

Writing a nice interface to a package requires work. Just because you use SWIG it doesn’t mean
that you’re going to end up with a good interface. SWIG is primarily designed to eliminate the
tedious task of writing wrapper functions. It does not eliminate the need for proper planning
and design when it comes to building a useful application. In short, a little forethought can go a
long way.

Of course,if you’re primarily interested in just slapping something together for the purpose of
debugging, rapid application development, and prototyping, SWIG will gladly do it for you (in
fact, I use SWIG alot for this when developing other C/C++ applications).
Version 1.1, June 23, 1997

	SWIG Basics
	Running SWIG
	Input format
	SWIG Output
	Comments
	C Preprocessor directives
	SWIG Directives
	Limitations in the Parser (and various things to k...

	Simple C functions, variables, and constants
	Integers
	Floating Point
	Character Strings
	Variables
	Constants

	Pointers and complex objects
	Simple pointers
	Run time pointer type checking
	Derived types, structs, and classes
	What happens when SWIG encounters an unknown datat...
	Typedef

	Getting down to business
	Passing complex datatypes by value
	Return by value
	Linking to complex variables
	Arrays
	Creating read-only variables
	Renaming declarations
	Overriding call by reference
	Default/optional arguments
	Pointers to functions

	Structures, unions, and object oriented C programm...
	Typedef and structures
	Character strings and structures
	Array members
	C constructors and destructors
	Adding member functions to C structures
	Nested structures
	Other things to note about structures

	C++ support
	Supported C++ features
	C++ example
	Constructors and destructors
	Member functions
	Static members
	Member data
	Protection
	Enums and constants
	References
	Inheritance
	Templates
	Renaming
	Adding new methods
	Partial class definitions
	SWIG, C++, and the Legislation of Morality
	The future of C++ and SWIG

	Objective-C
	Objective-C Example
	Constructors and destructors
	Instance methods
	Class methods
	Member data
	Protection
	The use of id
	Inheritance
	Referring to other classes
	Categories
	Implementations and Protocols
	Renaming
	Adding new methods
	Other issues

	Conditional compilation
	Defining symbols
	The #if directive
	Predefined Symbols

	Code Insertion
	The output of SWIG
	Code blocks
	Inlined code blocks
	Initialization blocks
	Wrapper code blocks

	A general interface building strategy
	Preparing a C program for SWIG
	The SWIG interface file
	Why use separate interface files?
	Getting the right header files
	What to do with main()
	Working with the C preprocessor
	How to cope with C++
	How to avoid creating the interface from hell

