examples.convection.robin

Solve an advection-diffusion equation with a Robin boundary condition.

This example demonstrates how to apply a Robin boundary condition to an advection-diffusion equation. The equation we wish to solve is given by,

0 &=\frac{\partial^2 C}{\partial x^2}
 - P \frac{\partial C}{\partial x} -D C \qquad 0 < x <1\\
x=0: P &= -\frac{\partial C}{\partial x} + P C \\
x=1: \frac{\partial C}{\partial x} & = 0

The analytical solution for this equation is given by,

C \left( x \right) =
\frac{ 2 P \exp{\left(\frac{P x}{2}\right)}
       \left[ \left(P + A \right) \exp{\left(\frac{A}{2} \left(1 - x\right)\right)} -
              \left(P - A \right) \exp{\left(-\frac{A}{2} \left(1 - x\right)\right)} \right]}
     { \left(P + A \right)^2 \exp{\left(\frac{A}{2}\right)} -
       \left(P - A \right)^2 \exp{\left(-\frac{A}{2}\right)}}

where

A = \sqrt{P^2 + 4D}

>>> from fipy import CellVariable, FaceVariable, Grid1D, DiffusionTerm, PowerLawConvectionTerm, ImplicitSourceTerm, Viewer
>>> from fipy.tools import numerix
>>> nx = 100
>>> dx = 1.0 / nx
>>> mesh = Grid1D(nx=nx, dx=dx)
>>> C = CellVariable(mesh=mesh)
>>> D = 2.0
>>> P = 3.0
>>> C.faceGrad.constrain([0], mesh.facesRight)

We note that the Robin condition exactly defines the flux on the left, so we introduce a corresponding divergence source to the equation.

Note

Zeroing out the coefficients of the equation at this boundary is probably not necessary due to the default no-flux boundary conditions of cell-centered finite volume, but it’s a safe precaution.

>>> convectionCoeff = FaceVariable(mesh=mesh, value=[P])
>>> convectionCoeff[..., mesh.facesLeft.value] = 0.
>>> diffusionCoeff = FaceVariable(mesh=mesh, value=1.)
>>> diffusionCoeff[..., mesh.facesLeft.value] = 0.
>>> eq = (PowerLawConvectionTerm(coeff=convectionCoeff)
...       == DiffusionTerm(coeff=diffusionCoeff) - ImplicitSourceTerm(coeff=D)
...       - (P * mesh.facesLeft).divergence)
>>> A = numerix.sqrt(P**2 + 4 * D)
>>> x = mesh.cellCenters[0]
>>> CAnalytical = CellVariable(mesh=mesh)
>>> CAnalytical.setValue(2 * P * numerix.exp(P * x / 2)
...                      * ((P + A) * numerix.exp(A / 2 * (1 - x))
...                         - (P - A) * numerix.exp(-A / 2 *(1 - x)))
...                      / ((P + A)**2*numerix.exp(A / 2)
...                         - (P - A)**2 * numerix.exp(-A / 2)))
>>> if __name__ == '__main__':
...     C.name = '$C$'
...     CAnalytical.name = '$C_{analytical}$'
...     viewer = Viewer(vars=(C, CAnalytical))
>>> if __name__ == '__main__':
...     restol = 1e-5
...     anstol = 1e-3
... else:
...     restol = 0.5
...     anstol = 0.15
>>> res = 1e+10
>>> while res > restol:
...     res = eq.sweep(var=C)
...     if __name__ == '__main__':
...         viewer.plot()
>>> print(C.allclose(CAnalytical, rtol=anstol, atol=anstol))
True
Last updated on Jun 27, 2023. Created using Sphinx 6.2.1.