References

[1]J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, 1996.
[2]Scott Chacon. Pro Git. Apress, 2009. URL: http://git-scm.com/book.
[3]W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma. Phase-field simulation of solidification. Annual Review of Materials Research, 32:163–194, 2002. doi:10.1146/annurev.matsci.32.101901.155803.
[4]L. Q. Chen. Phase-field mdoels for microstructure evolution. Annual Review of Materials Research, 32:113–140, 2002. doi:10.1146/annurev.matsci.32.112001.132041.
[5]G. B. McFadden. Phase-field models of solidification. Contemporary Mathematics, 306:107–145, 2002.
[6]David M Saylor, Jonathan E Guyer, Daniel Wheeler, and James A Warren. Predicting microstructure development during casting of drug-eluting coatings. Acta Biomaterialia, 7(2):604–613, Jan 2011. doi:10.1016/j.actbio.2010.09.019.
[7]Daniel Wheeler, James A. Warren, and William J. Boettinger. Modeling the early stages of reactive wetting. Physical Review E, 82(5):051601, Nov 2010. doi:10.1103/PhysRevE.82.051601.
[8]C. M Hangarter, B. H Hamadani, J. E Guyer, H Xu, R Need, and D Josell. Three dimensionally structured interdigitated back contact thin film heterojunction solar cells. Journal of Applied Physics, 109(7):073514, Jan 2011. doi:10.1063/1.3561487.
[9]D. Josell, D. Wheeler, W. H. Huber, and T. P. Moffat. Superconformal electrodeposition in submicron features. Physical Review Letters, 87(1):016102, 2001. doi:10.1103/PhysRevLett.87.016102.
[10]James A. Warren, Ryo Kobayashi, Alexander E. Lobkovsky, and W. Craig Carter. Extending phase field models of solidification to polycrystalline materials. Acta Materialia, 51(20):6035–6058, 2003. doi:10.1016/S1359-6454(03)00388-4.
[11]Guido van Rossum. Python Tutorial. URL: http://docs.python.org/tut/.
[12]Mark Pilgrim. Dive Into Python. Apress, 2004. ISBN 1590593561. URL: http://diveintopython.org.
[13]Guido van Rossum. Python Reference Manual. URL: http://docs.python.org/ref/.
[14]Greg Ward. Installing Python Modules. URL: http://docs.python.org/inst/.
[15]T. N. Croft. Unstructured Mesh - Finite Volume Algorithms for Swirling, Turbulent Reacting Flows. PhD thesis, University of Greenwich, 1998. URL: http://gala.gre.ac.uk/id/eprint/6371/.
[16]John W. Cahn and John E. Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. Journal of Chemical Physics, 28(2):258–267, 1958.
[17]John W. Cahn. Free energy of a nonuniform system. II. Thermodynamic basis. Journal of Chemical Physics, 30(5):1121–1124, 1959.
[18]John W. Cahn and John E. Hilliard. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. Journal of Chemical Physics, 31(3):688–699, 1959.
[19]K. R Elder, K Thornton, and J. J Hoyt. The kirkendall effect in the phase field crystal model. Philosophical Magagazine, 91(1):151–164, Jan 2011. doi:10.1080/14786435.2010.506427.
[20]S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Taylor and Francis, 1980.
[21]H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics. Longman Scientific and Technical, 1995.
[22]C. Mattiussi. An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology. Journal of Computational Physics, 133:289–309, 1997. URL: http://lis.epfl.ch/publications/JCP1997.pdf.
[23]William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in C: the Art of Scientific Computing. Cambridge University Press, 2nd edition, 1999.
[24]D. Wheeler, D. Josell, and T. P. Moffat. Modeling superconformal electrodeposition using the level set method. Journal of The Electrochemical Society, 150(5):C302–C310, 2003. doi:10.1149/1.1562598.
[25]D. Josell, D. Wheeler, and T. P. Moffat. Gold superfill in submicrometer trenches: experiment and prediction. Journal of The Electrochemical Society, 153(1):C11–C18, 2006. doi:10.1149/1.2128765.
[26]T. P. Moffat, D. Wheeler, S. K. Kim, and D. Josell. Curvature enhanced adsorbate coverage model for electrodeposition. Journal of The Electrochemical Society, 153(2):C127–C132, 2006. doi:10.1149/1.2165580.
[27]A. A. Wheeler, W. J. Boettinger, and G. B. McFadden. Phase-field model for isothermal phase transitions in binary alloys. Physical Review A, 45(10):7424–7439, 1992.
[28]J. A. Warren and W. J. Boettinger. Prediction of dendritic growth and microsegregation in a binary alloy using the phase field method. Acta Metallurgica et Materialia, 43(2):689–703, 1995.
[29]J. E. Guyer, W. J. Boettinger, J. A. Warren, and G. B. McFadden. Phase field modeling of electrochemistry I: Equilibrium. Physical Review E, 69:021603, 2004. arXiv:cond-mat/0308173, doi:10.1103/PhysRevE.69.021603.
[30]J. E. Guyer, W. J. Boettinger, J. A. Warren, and G. B. McFadden. Phase field modeling of electrochemistry II: Kinetics. Physical Review E, 69:021604, 2004. arXiv:cond-mat/0308179, doi:10.1103/PhysRevE.69.021604.
[31]T. P. Moffat, D. Wheeler, and D. Josell. Superfilling and the curvature enhanced accelerator coverage mechanism. The Electrochemical Society, Interface, 13(4):46–52, 2004. URL: http://www.electrochem.org/publications/interface/winter2004/IF12-04-Pg46.pdf.
[32]J. H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics. Springer, 1996.
[33]C.-C. Rossow. A blended pressure/density based method for the computation of incompressible and compressible flows. Journal of Computational Physics, 185(2):375–398, 2003. doi:10.1016/S0021-9991(02)00059-1.

Last updated on Jan 28, 2020. Created using Sphinx 1.8.5.