References

1

W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma. Phase-field simulation of solidification. Annual Review of Materials Research, 32:163–194, 2002. doi:10.1146/annurev.matsci.32.101901.155803.

2

L. Q. Chen. Phase-field mdoels for microstructure evolution. Annual Review of Materials Research, 32:113–140, 2002. doi:10.1146/annurev.matsci.32.112001.132041.

3

G. B. McFadden. Phase-field models of solidification. Contemporary Mathematics, 306:107–145, 2002.

4

David M Saylor, Jonathan E Guyer, Daniel Wheeler, and James A Warren. Predicting microstructure development during casting of drug-eluting coatings. Acta Biomaterialia, 7(2):604–613, Jan 2011. doi:10.1016/j.actbio.2010.09.019.

5

Daniel Wheeler, James A. Warren, and William J. Boettinger. Modeling the early stages of reactive wetting. Physical Review E, 82(5):051601, Nov 2010. doi:10.1103/PhysRevE.82.051601.

6

C. M Hangarter, B. H Hamadani, J. E Guyer, H Xu, R Need, and D Josell. Three dimensionally structured interdigitated back contact thin film heterojunction solar cells. Journal of Applied Physics, 109(7):073514, Jan 2011. doi:10.1063/1.3561487.

7

D. Josell, D. Wheeler, W. H. Huber, and T. P. Moffat. Superconformal electrodeposition in submicron features. Physical Review Letters, 87(1):016102, 2001. doi:10.1103/PhysRevLett.87.016102.

8

J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, 1996.

9

Scott Chacon. Pro Git. Apress, 2009. URL: http://git-scm.com/book.

10

Guido van Rossum. Python Tutorial. URL: http://docs.python.org/tut/.

11

Mark Pilgrim. Dive Into Python. Apress, 2004. ISBN 1590593561. URL: http://diveintopython.org.

12

Guido van Rossum. Python Reference Manual. URL: http://docs.python.org/ref/.

13

James A. Warren, Ryo Kobayashi, Alexander E. Lobkovsky, and W. Craig Carter. Extending phase field models of solidification to polycrystalline materials. Acta Materialia, 51(20):6035–6058, 2003. doi:10.1016/S1359-6454(03)00388-4.

14

T. N. Croft. Unstructured Mesh - Finite Volume Algorithms for Swirling, Turbulent Reacting Flows. PhD thesis, University of Greenwich, 1998. URL: http://gala.gre.ac.uk/id/eprint/6371/.

15

S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Taylor and Francis, 1980.

16

H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics. Longman Scientific and Technical, 1995.

17

C. Mattiussi. An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology. Journal of Computational Physics, 133:289–309, 1997. URL: http://lis.epfl.ch/publications/JCP1997.pdf.

18

John W. Cahn and John E. Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. Journal of Chemical Physics, 28(2):258–267, 1958.

19

John W. Cahn. Free energy of a nonuniform system. II. Thermodynamic basis. Journal of Chemical Physics, 30(5):1121–1124, 1959.

20

John W. Cahn and John E. Hilliard. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. Journal of Chemical Physics, 31(3):688–699, 1959.

21

K. R Elder, K Thornton, and J. J Hoyt. The kirkendall effect in the phase field crystal model. Philosophical Magagazine, 91(1):151–164, Jan 2011. doi:10.1080/14786435.2010.506427.

22

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in C: the Art of Scientific Computing. Cambridge University Press, 2nd edition, 1999.

23

J. A. Warren and W. J. Boettinger. Prediction of dendritic growth and microsegregation in a binary alloy using the phase field method. Acta Metallurgica et Materialia, 43(2):689–703, 1995.

24

A. A. Wheeler, W. J. Boettinger, and G. B. McFadden. Phase-field model for isothermal phase transitions in binary alloys. Physical Review A, 45(10):7424–7439, 1992.

25

J. E. Guyer, W. J. Boettinger, J. A. Warren, and G. B. McFadden. Phase field modeling of electrochemistry I: Equilibrium. Physical Review E, 69:021603, 2004. arXiv:cond-mat/0308173, doi:10.1103/PhysRevE.69.021603.

26

J. E. Guyer, W. J. Boettinger, J. A. Warren, and G. B. McFadden. Phase field modeling of electrochemistry II: Kinetics. Physical Review E, 69:021604, 2004. arXiv:cond-mat/0308179, doi:10.1103/PhysRevE.69.021604.

27

J. H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics. Springer, 1996.

28

C.-C. Rossow. A blended pressure/density based method for the computation of incompressible and compressible flows. Journal of Computational Physics, 185(2):375–398, 2003. doi:10.1016/S0021-9991(02)00059-1.

29

Greg Ward. Installing Python Modules. URL: http://docs.python.org/inst/.

30

T. P. Moffat, D. Wheeler, and D. Josell. Superfilling and the curvature enhanced accelerator coverage mechanism. The Electrochemical Society, Interface, 13(4):46–52, 2004. URL: http://www.electrochem.org/publications/interface/winter2004/IF12-04-Pg46.pdf.

31

D. Wheeler, D. Josell, and T. P. Moffat. Modeling superconformal electrodeposition using the level set method. Journal of The Electrochemical Society, 150(5):C302–C310, 2003. doi:10.1149/1.1562598.

32

D. Josell, D. Wheeler, and T. P. Moffat. Gold superfill in submicrometer trenches: experiment and prediction. Journal of The Electrochemical Society, 153(1):C11–C18, 2006. doi:10.1149/1.2128765.

33

T. P. Moffat, D. Wheeler, S. K. Kim, and D. Josell. Curvature enhanced adsorbate coverage model for electrodeposition. Journal of The Electrochemical Society, 153(2):C127–C132, 2006. doi:10.1149/1.2165580.

Last updated on Jan 14, 2021. Created using Sphinx 3.4.3.