examples.levelSet.advection package¶
Submodules¶
examples.levelSet.advection.circle module¶
Solve a circular distance function equation and then advect it.
This example first imposes a circular distance function:
The variable is advected with,
The scheme used in the
FirstOrderAdvectionTerm
preserves the var
as a distance function. The solution to this
problem will be demonstrated in the following script. Firstly, setup
the parameters.
>>> from fipy import CellVariable, Grid2D, DistanceVariable, TransientTerm, FirstOrderAdvectionTerm, AdvectionTerm, Viewer
>>> from fipy.tools import numerix
>>> L = 1.
>>> N = 25
>>> velocity = 1.
>>> cfl = 0.1
>>> velocity = 1.
>>> distanceToTravel = L / 10.
>>> radius = L / 4.
>>> dL = L / N
>>> timeStepDuration = cfl * dL / velocity
>>> steps = int(distanceToTravel / dL / cfl)
Construct the mesh.
>>> mesh = Grid2D(dx=dL, dy=dL, nx=N, ny=N)
Construct a distanceVariable object.
>>> var = DistanceVariable(
... name = 'level set variable',
... mesh = mesh,
... value = 1.,
... hasOld = 1)
Initialize the distanceVariable to be a circular distance function.
>>> x, y = mesh.cellCenters
>>> initialArray = numerix.sqrt((x - L / 2.)**2 + (y - L / 2.)**2) - radius
>>> var.setValue(initialArray)
The advection equation is constructed.
>>> advEqn = TransientTerm() + FirstOrderAdvectionTerm(velocity)
The problem can then be solved by executing a serious of time steps.
>>> from builtins import range
>>> if __name__ == '__main__':
... viewer = Viewer(vars=var, datamin=-radius, datamax=radius)
... viewer.plot()
... for step in range(steps):
... var.updateOld()
... advEqn.solve(var, dt=timeStepDuration)
... viewer.plot()
The result can be tested with the following commands.
>>> from builtins import range
>>> for step in range(steps):
... var.updateOld()
... advEqn.solve(var, dt=timeStepDuration)
>>> x = numerix.array(mesh.cellCenters[0])
>>> distanceTravelled = timeStepDuration * steps * velocity
>>> answer = initialArray - distanceTravelled
>>> answer = numerix.where(answer < 0., -1001., answer)
>>> solution = numerix.where(answer < 0., -1001., numerix.array(var))
>>> numerix.allclose(answer, solution, atol=4.7e-3)
1
If the advection equation is built with the
AdvectionTerm()
the result is more accurate,
>>> var.setValue(initialArray)
>>> advEqn = TransientTerm() + AdvectionTerm(velocity)
>>> from builtins import range
>>> for step in range(steps):
... var.updateOld()
... advEqn.solve(var, dt=timeStepDuration)
>>> solution = numerix.where(answer < 0., -1001., numerix.array(var))
>>> numerix.allclose(answer, solution, atol=1.02e-3)
1
examples.levelSet.advection.mesh1D module¶
Solve the distance function equation in one dimension and then advect it.
This example first solves the distance function equation in one dimension:
with at
.
The variable is then advected with,
The scheme used in the FirstOrderAdvectionTerm preserves the var as a distance function.
The solution to this problem will be demonstrated in the following script. Firstly, setup the parameters.
>>> from fipy import CellVariable, Grid1D, DistanceVariable, TransientTerm, FirstOrderAdvectionTerm, AdvectionTerm, Viewer
>>> from fipy.tools import numerix, serialComm
>>> velocity = 1.
>>> dx = 1.
>>> nx = 10
>>> timeStepDuration = 1.
>>> steps = 2
>>> L = nx * dx
>>> interfacePosition = L / 5.
Construct the mesh.
>>> mesh = Grid1D(dx=dx, nx=nx, communicator=serialComm)
Construct a distanceVariable object.
>>> var = DistanceVariable(name='level set variable',
... mesh=mesh,
... value=-1.,
... hasOld=1)
>>> var.setValue(1., where=mesh.cellCenters[0] > interfacePosition)
>>> var.calcDistanceFunction()
The advectionEquation is constructed.
>>> advEqn = TransientTerm() + FirstOrderAdvectionTerm(velocity)
The problem can then be solved by executing a serious of time steps.
>>> from builtins import range
>>> if __name__ == '__main__':
... viewer = Viewer(vars=var, datamin=-10., datamax=10.)
... viewer.plot()
... for step in range(steps):
... var.updateOld()
... advEqn.solve(var, dt=timeStepDuration)
... viewer.plot()
The result can be tested with the following code:
>>> from builtins import range
>>> for step in range(steps):
... var.updateOld()
... advEqn.solve(var, dt=timeStepDuration)
>>> x = mesh.cellCenters[0]
>>> distanceTravelled = timeStepDuration * steps * velocity
>>> answer = x - interfacePosition - timeStepDuration * steps * velocity
>>> answer = numerix.where(x < distanceTravelled,
... x[0] - interfacePosition, answer)
>>> print(var.allclose(answer))
1
examples.levelSet.advection.test module¶
examples.levelSet.advection.trench module¶
This example creates a trench with the following zero level set:
>>> from fipy import CellVariable, Grid2D, DistanceVariable, TransientTerm, FirstOrderAdvectionTerm, AdvectionTerm, Viewer
>>> from fipy.tools import numerix, serialComm
>>> height = 0.5
>>> Lx = 0.4
>>> Ly = 1.
>>> dx = 0.01
>>> velocity = 1.
>>> cfl = 0.1
>>> nx = int(Lx / dx)
>>> ny = int(Ly / dx)
>>> timeStepDuration = cfl * dx / velocity
>>> steps = 200
>>> mesh = Grid2D(dx = dx, dy = dx, nx = nx, ny = ny, communicator=serialComm)
>>> var = DistanceVariable(name = 'level set variable',
... mesh = mesh,
... value = -1.,
... hasOld = 1
... )
>>> x, y = mesh.cellCenters
>>> var.setValue(1, where=(y > 0.6 * Ly) | ((y > 0.2 * Ly) & (x > 0.5 * Lx)))
>>> var.calcDistanceFunction()
>>> advEqn = TransientTerm() + FirstOrderAdvectionTerm(velocity)
The trench is then advected with a unit velocity. The following test can be made for the initial position of the interface:
>>> r1 = -numerix.sqrt((x - Lx / 2)**2 + (y - Ly / 5)**2)
>>> r2 = numerix.sqrt((x - Lx / 2)**2 + (y - 3 * Ly / 5)**2)
>>> d = numerix.zeros((len(x), 3), 'd')
>>> d[:, 0] = numerix.where(x >= Lx / 2, y - Ly / 5, r1)
>>> d[:, 1] = numerix.where(x <= Lx / 2, y - 3 * Ly / 5, r2)
>>> d[:, 2] = numerix.where(numerix.logical_and(Ly / 5 <= y, y <= 3 * Ly / 5), x - Lx / 2, d[:, 0])
>>> argmins = numerix.argmin(numerix.absolute(d), axis = 1)
>>> answer = numerix.take(d.ravel(), numerix.arange(len(argmins))*3 + argmins)
>>> print(var.allclose(answer, atol = 1e-1))
1
Advect the interface and check the position.
>>> if __name__ == '__main__':
... viewer = Viewer(vars=var, datamin=-0.1, datamax=0.1)
...
... viewer.plot()
>>> from builtins import range
>>> for step in range(steps):
... var.updateOld()
... advEqn.solve(var, dt = timeStepDuration)
... if __name__ == '__main__':
... viewer.plot()
>>> distanceMoved = timeStepDuration * steps * velocity
>>> answer = answer - distanceMoved
>>> answer = numerix.where(answer < 0., 0., answer)
>>> var.setValue(numerix.where(var < 0., 0., var))
>>> print(var.allclose(answer, atol = 1e-1))
1