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Abstract

The new generation of mass spectrometers produces an astonishing amount of high-
quality data in a brief period of time leading to inevitable data analysis bottlenecks.
Automated data analysis algorithms are required for rapid and repeatable processing of
mass spectra containing hundreds of peaks, the part of the spectra containing informa-
tion. New algorithms must work with minimal user input, both to save operator time
and to eliminate inevitable operator bias. Toward this end an accurate mathematical
algorithm is presented that automatically locates and calculates the area beneath peaks.
Promising numerical performance of this algorithm on raw data is presented.

1 Introduction

Modern mass spectrometers are capable of producing large, high-quality data sets in brief
periods of time ([10]). It is not uncommon for a synthetic polymer to produce a spectra with
hundreds of peaks. This motivates the design of automated data analysis algorithms capable
of rapid and repeatable processing of raw mass spectrometer data. While many algorithms
for the analysis of raw mass spectrometer already exist, they all require significant operator
input. In some cases smoothing parameters must be selected, in other cases one must identify
peaks from noise or vice-versa, and many algorithms assume the functional form of data close
to peaks or troughs. Once the data has been processed, for example peaks or troughs have
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been selected and the area underneath portions of the data have been calculated, there is
still no standard or point of comparison ([5, 6]).

The goal of this paper is to present an algorithm with the potential to automatically
identify peak structure from raw mass spectrometer output without the use of smoothing,
parameter specific filtering, or manual data analysis. This method requires no knowledge of
peak shape and no pre- or post-processing of the data. Experience to date on matriz-assisted
laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF-MS) shows that
the power spectrum of the noise cannot be predicted solely from the experimental conditions;
therefore, blind application of smoothing and/or filtering algorithms may unintentionally
remove information from the data. The new method does not have this failing. It does not
require equal spacing of data points. However, it does require one single sensitivity parameter.
This parameter’s size can be bounded from below by knowledge of the ultimate resolution of
the instrument and can be well approximated automatically by statistical properties of the
raw data.

At present there is no single algorithm that will always and accurately identify peak
structure in raw mass spectroscopy data without operator input. However an algorithm that
produces output independent of any operator parameter selection or signal to noise estimation
would be of tremendous benefit for the purpose of comparison (e.g. [8]).

2 Algorithm

In this section a two-phase algorithm is outlined. Described is a method for identifying, what
will be called strategic points, by solving a sequence of maximum orthogonal (Euclidean)
distance problems ([4]). Once these strategic points have been obtained, a nonlinear pro-
gramming problem (NLP) is solved to find the optimal line segments which will constitute
our solution.

Consider the collection of N raw data pairs, D € R2*Y¥. Without loss of generality assume
that the raw data, D = [d;;], is strictly monotone in the first coordinate, di; < do; < ... <
dyi. In the case that raw data is not monotone it can be re-ordered or one can apply a
simple isotonic regression [7]. Given any two pairs in the data set, say (dg1,dg2) = di and
(d, di2) = dy, one can define the line segment connecting them to be s(dy, d;). For any such
line segment and any data point one can rapidly locate the point that maximizes orthogonal
distance from s(dg, d;), say di.. Here dj, would solve,

max dist (Jm, s(dy, dl)) (2.1)

d1<dj1<ds

and have optimal value, say f(d,,). The point, dj, can now become a new endpoint to two new
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line segments, s(d, czk) and s(czk, d;) and the process can be continued until the distance of the
data point with greatest orthogonal distance from associated line segment falls beneath some
prescribed tolerance, denoted here by 7. The tolerance 7 can be estimated statistically for
any given data set (see [9]). The collection of points that solve problems (2.1) will constitute
our set of strategic points.

Secondly, given a collection of, say M, strategic points Jm, one can find the ‘optimal’
piecewise linear fit by solving an equality constrained NLP. Consider a two adjacent strategic
points, say Jp and ci(pﬂ) and further assume that there are () data points above and beneath
the line segment connecting Jp and J(p+1) (i.e. there are ) non-strategic points between cZ,,

and cf(pﬂ)). The solution of the minimization problem,

Q
min Z % (diZ - S(Czpza CZ(p+1)2)>2

dp2,d(p11)2 41

finds the optimal height (or second coordinate) for the strategic point ch. Because a continu-
ous piecewise linear function is sought the constraints imposing continuity between solutions
must be imposed. Given M strategic points one arrives at a nonlinear programming problem
with M variables and M —1 linear equality constraints. The solution of this problem provides
the optimal height, in the least squares sense, with respect to data between adjacent strategic
points. The problem is coupled through the continuity constraints that ensure a continuous
piece-wise linear function.
The algorithm can be stated as follows:

0 Given D and 7

~

1 Do while maximum f(d,,) < 7,
— Solve orthogonal distance problem (2.1) resulting in M strategic points D.

2 Solve nonlinear programming problem (with M variables and M — 1 constraints) ad-
justing second coordinate of the strategic points.

In theory, the problem of identifying the data point with maximum orthogonal distance
may not yield a unique solution but this does not pose any difficulty in practice as it has yet
to be observed in numerical experimentation.

Upon completion of the algorithm one is left with a continuous piece-wise linear approxi-
mation to raw data from which maxima and minima can more easily be extracted ([1]). Once
a peak and two adjacent troughs have been identified, the area underneath that peak can
be approximated through a quadrature rule or by calculating the area of the polytope of
strategic points between the two adjacent troughs.
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Values of 7 0.25 | 0.5 0.75 | 1.0
Number of strategic pts. | 8031 | 7856 | 6999 | 6251
Number of peaks found 831 831 830 825
Elapsed CPU Time (secs) | 18.84 | 16.12 | 15.03 | 14.67

3 Numercial Results

In this section the numerical behavior of the algorithm is described. As a numerical example
for this short paper, we selected polyethylene glycol (PEG) to demonstrate the performance
of the algorithm. This data set contains 19772 pairs of data and was selected because it
has essentially no baseline to contend with and therefore makes an excellent problem to
demonstrate the ‘peak-picking’ aspect of the algorithm presented here. The algorithm has
been applied to numerous other mass spectrometry data sets and a more comprehensive
description of the numerical behavior is currently in preparation ([9]).

The maximum orthogonal distance problem in the first step of the algorithm can be
solved rapidly by sweeping through the data from left to right. The second step of the
algorithm requires the solution of an nonlinear programming problem. Currently a sequential
quadratic programming algorithm described in [3, 2] is employed, although any large scale
NLP algorithm would suffice.

The algorithm was coded in Fortran95 and is installed on a 450 MHz SPARCstation Ultra
80 using IEEFE floating point arithmetic (64 bit). When applied to the raw PEG data the
algorithm identified different numbers of strategic points for various selections of 7, as shown
in Table 3. However the number of peaks (and associated area approximations) were virtually
identical for values of 7 between 0.25 and 1.0.

When plotted in entirety, the raw data (Figure 1) and and the processed data (Figure
2) appear to be identical. Closer examination shows that the processed data more clearly
exhibits peaks and troughs. In Figure 3 the solution correctly identifies all peak structure with
little ambiguity; however Figure 4 identifies as a single peak what appears from inspection of
the raw data to be three separate peaks.

Where this algorithm chooses a single parameter (which can be estimated statistically
[9]) most other algorithms require far more parameter selections. The algorithm presented
here is robust with respect to changes in the data and is completely reproduceable. Solutions
produced from this algorithm form an excellent tool for comparison.
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Figure 1: Raw (PEG) data Figure 2: Processed (PEG) data

4 Conclusions

We have presented an automated two-stage automatic algorithm for rapid, robust and repro-
duceable identification of peaks (and troughs) in raw mass spectrometry data. The algorithm
does not rely on smoothing or parameter-driven filtering techniques instead it requires only
one parameter (which can be estimated directly from the data).

The algorithm is very fast and produces reasonable results for wide ranges of the single
parameter 7. For smaller values of 7, clearly the algorithm may incorrectly identify peaks on
the order of magnitude less than or equal to the order of magnitude of error or noise in the
data. If 7 is too large, very small peak structure may not be properly identified. However,
the robustness and the reproduceability of this algorithm makes it a natural first choice for
processing raw mass spectrometry data.
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