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Abstract

The new generation of mass spectrometers producesan astonishing amount of high-quality data in a brief
periodof time, leading to inevitable data analysis bottlenecks. Automated data analysis algorithms are required for
rapid and repeatable processing of mass spectra containing hundreds of peaks, the part of the spectra containing
information. New data processing algorithms must work with minimal user input, both to save operator time
and to eliminate inevitable operator bias. Toward this end an accurate mathematical algorithm is presented
that automatically locates and calculates the area beneath peaks. The promising numerical performance of this
algorithm applied to raw data is presented.
Published by Elsevier Ltd

1. Introduction

Modern mass spectrometers are capable of producing large, high-quality data sets in brief periods of
time [13]. It isnot uncommon for a synthetic polymer to produce a spectrum with hundreds of peaks. This
motivates the design of automated data analysis algorithms capable of rapid and repeatable processing
of raw mass spectrometer data. While many algorithms for the analysis of raw mass spectrometer output
already exist, they all require significant operator input. In some cases smoothing parameters must be
selected, in other cases one must identify peaks from noise or vice versa, and many algorithms assume
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the functional form of data close to peaks or troughs. Once the data has been processed, for example
peaks or troughs have been selected and the area underneath portions of the data have been calculated,
there is still no standardor point of comparison [7,8].

The goal of this work is to present an algorithm with the potential of automatically identifying
peak structure from raw mass spectrometer output without the use of smoothing, parameter specific
filtering, or manual data analysis. This method requires no knowledge of peak shape and no pre- or
post-processing of the data. Experience to date onmatrix-assisted laser desorption/ionization–time of
flight mass spectrometry(MALDI-TOF-MS) shows that the power spectrum of the noise cannot be
predicted solely from the experimental conditions; therefore, blind application of smoothing and/or
filtering algorithms may unintentionally remove information from the data. The new method does not
have this failing. It does not require equal spacing of data points. It does require one single sensitivity
parameter that can be accurately estimated. The sensitivity parameter’s size can be bounded from below
by knowledge of the ultimate resolution of the instrument and can be well approximated automatically
using statistical properties of the raw data.

At present there is no single algorithm that will always and accurately identify peak structure in raw
mass spectroscopy data without operator input. However an algorithm that produces output independent
of anyoperator parameter selection or signal to noise estimation would be of tremendous benefit for the
purpose of comparison (e.g. [11]).

2. Algorithm

In this section a two-phase algorithm is outlined. Described is a method for identifying what will be
called strategic points, by solving a sequence of maximum orthogonal (Euclidean) distance problems
[6]. Once these strategic points have been obtained, a nonlinear programming problem (NLP) is solved
to find theoptimal line segments which will constitute our solution.

Considerthe collection ofN raw data pairs,D ∈ RN×2. Without loss of generality assume that
the raw data,D = [di j ], with i = 1 . . . N and j = 1, 2, is strictly monotone in the first coordinate,
d11 < d21 < · · · < dN1. In the case where raw data is not monotone it can be re-ordered or one can
apply a simple isotonic regression (see [10,9]). Given any two pairsin the data set, say(dk1, dk2) = dk
and(dl1, dl2) = dl , one can define the line segment connecting them to bes(dk, dl ) and the set of points
betweendk anddl to beI(dk, dl ) = {dj : k1 < j 1 < l1}. Given a collection of data pointsD and
a line segment, says(dk, dl ), one can rapidly locate the data point(s) inI(dk, dl ) that maximize(s) the
orthogonal distance (see for example [5,2]) from s(dk, dl ) to the point(s). For simplicity, assume that
there isonly one point, saŷdk. Hered̂k would solve

max
d̂k∈I(dk,dl )

dist(d̂k, s(dk, dl )) (1)

and have optimal value, sayf (d̂k) ≥ 0. Our goal is to construct a piecewise linear approximation to the
data that is accurate to within a tolerance, sayτ . If f (d̂k) ≥ τ , then the point,d̂k, can become a new
endpoint to two new line segments,s(dk, d̂k) ands(d̂k, dl ), and the process can be continued [6] until
f (d̂k) ≤ τ for all datapoints. The toleranceτ can be estimated statistically for any given data set (see
[12]). The collection of all points that solve problems (1) will constitute our set ofstrategic points.

Next, given a collection of, say,M strategic pointsd̂m, one can find the ‘optimal’ piecewise linear
fit by solving an equality constrained nonlinear optimization problem as follows. Consider two adjacent
strategic points, saŷdp andd̂(p+1), and assume that there areQ data points inI(d̂p, d̂p+1), i.e., there
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areQ non-strategic points between̂dp andd̂p+1). The solution of the minimization problem

min
d̂p2,d̂(p+1)2

Q∑

i=1

1

2
(di2 − s(d̂p2, d̂(p+1)2))

2

finds the optimal height (or second coordinate) for the strategic pointsd̂p andd̂p+1. Because acontinuous
piecewise linear function is sought, the constraints imposing continuity between solutions must be
included. GivenM strategic points one arrives at a nonlinear programming problem withM variables
andM − 1 linear equality constraints enforcing that endpoints of adjacent line segments must be equal.
The solution of this problem provides the optimal height, in the least squares sense, with respect to data
between adjacent strategic points. Again, the problem is coupled through the continuity constraints that
ensure a continuous piecewise linear function.

The algorithm can be stated as follows:

0 givenD,
1 do while maximum f (d̂k) < τ ,

– solve orthogonal distance problem (1) resulting in M strategic pointsD̂,

2 solvenonlinear programming problem (withM variables andM − 1 constraints) adjusting second
coordinate of the strategic points.

In theory, the problem of identifying the data point with maximum orthogonal distance may not yield
aunique solution, but we have yet to observe this in numerical experimentation.

Upon completion of the algorithm one is left with a continuous piecewise linear approximation to raw
data from which maxima and minima can more easily be extracted [1]. Once a peak and twoadjacent
troughs have been identified, the area underneath that peak can be approximated through a quadrature
rule or by calculating the area of the polytope of strategic points between the two adjacent troughs.

3. Numerical results

In this section the numerical behavior of the algorithm is described. As a numerical example for this
short work, we selectedpolyethylene glycol(PEG) fordemonstrating the performance of the algorithm.
This data set contains 19 772 pairs of data and was selected because it has essentially no baseline to
contend with and therefore makes an excellent problem for demonstrating the ‘peak-picking’ aspect of
the algorithm presented here. The algorithm has been applied to numerous other mass spectrometry data
sets and a more comprehensive description of the numerical behavior can be found in [12].

The maximum orthogonal distance problem in the first step of the algorithm can be solved rapidly by
sweeping through the data from left to right. The second step of the algorithm requires the solution of a
nonlinear programming problem. Currently a sequential quadratic programming algorithm described in
[4,3] is employed, although any large scale NLP algorithm would suffice.

The algorithm was coded in Fortran95 and is installed on a 450 MHz SPARCstation Ultra 80 using
IEEE floating point arithmetic (64 bit). When applied to the raw PEG data, the value ofτ was estimated
to be τ = 0.47234. In addition, the algorithm was applied with four different selected values ofτ .
Obviously, different numbers of strategic points will result from various selections ofτ , as shown
in Table 1. However thenumbers of peaks (and associated area approximations) were virtually identical
for values ofτ between 0.25 and 1.0.
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Table 1

Values ofτ 0.25 0.5 0.75 1.0 0.47234

Number of strategic pts. 8031 7856 6999 6251 7855
Number of peaks found 831 831 830 825 831
Elapsed CPU time (s) 18.84 16.12 15.03 14.67 16.66

Fig. 1. Raw (PEG) data.

When plotted in their entirety, the raw data (Fig. 1) and the processed data (Fig. 2) appear to be
identical. This illustrates, not surprisingly, that the algorithm results in a piecewise linear approximation
to the data. Close examination shows that the processed data more clearly exhibits peaks and troughs.
In Fig. 3 the solution closely follows the raw data; however, inFig. 4between mass values of 1844.5 u
and 1845.75 u the solution identifies as a single peak what appears from inspection of the raw data to be
three separate peaks.

Where this algorithm chooses a single parameter (which can be estimated statistically [12]), most
other algorithms require far more parameter selections. The algorithm presented here is robust with
respect to changes in the data and is completely reproducible. Solutions produced from this algorithm
form an excellent tool for comparison.

4. Conclusions

Wehave presented an automated two-stage algorithm for rapid, robust and reproducible identification
of peaks (and troughs) in raw mass spectrometry data. The algorithm does not rely on smoothing or
parameter-driven filtering techniques; instead it requires only one parameter (which can be estimated
directly from the data).
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Fig. 2. Processed (PEG) data.

Fig. 3. Raw and processed (PEG) data.

The algorithm is very fast and produces reasonable results for wide ranges of the single parameterτ .
For smallervalues ofτ , clearly the algorithm may incorrectly identify peaks on an order of magnitude
less than or equal to the order of magnitude of the error or noise in the data. Ifτ is too large, very small
peak structure may not be properly identified. However, the robustness and the reproducibility of this
algorithm makes it a natural first choice for processing raw mass spectrometry data.
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Fig. 4. Raw and processed (PEG) data.
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