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Automatic Skeleton Auto-skeleton main sequence
feature

Image (484x484) Initial skeleton

*Encapsulates an effective
strategy for combining and
tuning skeleton
modification methods to
yield a good mesh that
“fits” a microstructure.
«Little user intervention
(i.e. thinking) required.
Suitable to be
implemented as part of an

Refine heterogeneous
elements

Smooth skeleton
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Improves element quality. /
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\ List of defined interfaces #

/Implementing physics of interfaces into OOF2 (experimental)

lll. Dividing the mesh along “crack”-like interfaces

I. Defining interfaces Il. Surface tension (small deformations)

contribute to the stiffness matrix.
implicitly by a pair of element properties Forces are applied at the @
(e.g. pixel group or bulk material), or explicitly interface nodes.
by assigning interface materials to skeleton
boundaries.

Interfaces are defined along element edges.
Relies on edges being reasonably placed
at material boundaries. Interfaces are specified

One-dimensional interfacial
elements (“edgements”)

Assign interface material to an
interface, e.g. to a pair of
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2dd Property to Materal

Skeleton material display

(=] pixel groups or bulk materials.
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Deformed mesh material display

An interface graph

q q = eI R e is constructed
Assign properties to . : ﬁ when the mesh

an interface material.
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is created. C

Initial skeleton and interfaces  Deformed mesh +Discontinuity in
defined along a set of fluxes (currents) and
skeleton boundaries t Displacement fields across an
interface
«Anisotropic surface Example
<; Y} <)g tension
Ex 1 KoK |:> *Non-linear solvers
SKEKDE for non-linear 1 7
PR properties R. Edwin Garcia
DN / «Time-dependence
| General OOF Papers in the
Ex.2 | |:> works:
«Modeling Microstructures with OOF2,
[ ;;;;’, Andrew C.E. Reid, Rhonald C. Lua, R.

To split the mesh
along the interface, )
“zones” are defined - - -
around interface
nodes. Ex.
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IV. Future developments

Edwin Garcia, Valerie R. Coffman,
Stephen A. Langer. Submitted to the
International Journal of Materials and
Product Technology.

*OOF: A Generalized Image-Based
Finite Element Analysis of Material
Microstructures, R. Edwin Garcia and
the OOF Team.

«Image-Based Adaptive Meshing, the
OOF Team.

«Systematic Testing of a GTK
Graphical User Interface, Andrew C.E.
Reid, Stephen A. Langer, R. Edwin
Garcia, Rhonald C. Lua, Valerie R.
Coffman.




