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Abstract

The practical use of solidification modeling requires the treatment of multicomponent alloys.
Significant progress has occurred in the development of thermodynamic databases for
commercial alloys in recent years. Thermodynamic calculations using these databases with
various microsegregation models are described.  Effects of dendritic growth and solid diffusion
on primary solidification and the continuation of the solidification path involving multiphase
reactions are considered.  Procedures to compute changes of enthalpy and density as functions
of temperature during solidification are also reported.
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Introduction

In this paper we consider the solidification path and resulting microsegregation occurring in
castings of multicomponent alloys. Five topics will be discussed: the range of validity of the local
equilibrium assumption, the description of phase diagram information using the CALPHAD
method, predictions of a Scheil analysis including the formation of multivariant eutectics and
peritectics, calculations of enthalpy and density changes during solidification, and deviations from
the Scheil description caused by diffusion in the solid and dendrite tip kinetics.

Local Equilibrium Assumption

During all solidification processes, gradients of temperature and composition exist within the
phases. However the growth kinetics can often be described using diffusion/convection transport
modeling and using the equilibrium phase diagram to give the possible temperatures and
compositions for the boundaries between the phases, e.g., at the solidification interface. The Gibbs-
Thomson effect is included to determine shifts in equilibrium due to the curvature of the liquid-
solid interface. This condition is called local equilibrium.

Local equilibrium is never strictly valid, but it is based on the notion that interfaces equilibrate
much more quickly than bulk phases. Experiments to measure deviations from local equilibrium
generally examine the velocity dependence of the partition coefficient, k(V), for dilute alloys,
defined as the ratio of CS

* to CL
*, the compositions at the interface of the solid and liquid. Analysis

and experiments on doped silicon and metallic alloys (1) suggest that 

k(V)�
kE�V/VD

1�V/VD

(1)

where kE is the equilibrium partition coefficient and  is the diffusive speed that has beenVD
measured to lie between 6 and 38 m/s for different alloys. The velocity required to obtain a 1%
variation in k(V) from kE is 0.01VD kE / (1-k E ) or between 0.06 and 0.38 m/s for 0.5. SuchkE�

speeds are not usually found in castings. The deviation of the interface temperature from the
liquidus is also negligible as long as k(V) is near kE. Hence equilibrium phase diagrams are very
useful for solidification modeling of castings. The effect of high speed solidification on
microsegregation is described elsewhere (2).

Phase Diagram Information via the CALPHAD Method

The CALPHAD method (calculation of phase diagrams)  (3, 4) employs free energies of phases
whose functional dependence on temperature and concentration approximate simple physical
models for the atomic interactions in each phase. The concentration of the solid (or solids) in
equilibrium with a given liquid concentration at a given temperature are obtained by equating the
chemical potentials of each component in the coexisting phases according to standard
thermodynamic principles.

Sets of free energy functions are available from the literature for many binary and some ternary
systems. Numerical parameters for these functions are obtained by fitting the thermodynamic data
(calorimetry, vapor pressure, emf, etc.) and the experimental phase diagram.  For higher order
systems, considerable success has been reported (5, 6) using a thermodynamic treatment of the
ternary subsystems and employing a thermodynamic extrapolation method to treat the quaternary
and all higher order systems.
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Several groups have coupled thermodynamic calculation of phase diagrams to solidification models
(see refs. in (7)). For the present work, it has been found convenient to describe the phase
relationships with three subroutines of code: LEVER, SLOPE and HEAT. These subroutines have
been prepared using a modified version of the PMLFKT code developed by Lukas et al. (8).
Output is available in either an atomic or mass (weight) basis. LEVER gives a list of all phases
present at equilibrium (liquid  L and solid phases �) , their compositions,  CL i and C

� i , and their
mole or mass fractions, fL and f

�
, for a specified temperature T and overall composition, C0 i. This

subroutine represents the standard "lever rule" relationship. It is used to determine when solid
phases start or stop forming. SLOPE gives the liquidus temperature, TL� , the solid phase
concentrations, C

� i ,  and the liquidus slopes, m
� i =�TL� /�CLi , for a specified liquid composition

and for each solid phase � on the list. HEAT gives the enthalpy per unit mass or per mole for each
phase, H

�
, on the list for a given temperature and phase composition.  In symbolic form they are:

LEVER: (T, C0 i ) � (list, CLi , C
� i , f

�
)

SLOPE: (CLi , list ) � (TL , C
� i , m

� i )
HEAT: ( list, T, C

� i ) � (H
�
)

(2)

Table 1 shows two examples of the output of the subroutine SLOPE for the FCC phase for two
commercial Al alloys. Here the data base developed by Saunders has been employed (9). Clearly
the values for mi and k i are different for some of the solutes in the two alloys. The ability to
determine the concentration dependence of these parameters is a great advantage of the
thermodynamic approach. Other thermodynamic software can also be used to deliver phase
diagram information to process models (10).

Table 1 - Example of output from SLOPE subroutine using Al database from Saunders (9). The
units of concentration are wt% and of liquidus slope are °C/wt%. Al is treated as the solvent.

TL(°C) Al Si Fe Cu Mn Mg Zn Ti

A356 624 CLi --- 6.0 0.2 0.2 0.1 0.35 0.1 0.2

CSi --- 0.69 .003 .023 .038 0.065 .047 0.93

mi --- -6.86 -2.11 -3.19 -1.27 -2.85 -2.06 15.8

ki --- 0.11 .015 0.12 0.38 0.19 0.47 4.67

2219 642 CLi --- 0.1 0.2 6.3 0.3

CSi --- .012 .005 0.21 0.64

mi --- -6.41 -3.35 -2.76 -1.84

ki --- 0.12 .025 0.10 0.72  

Scheil Solidifications Paths in Multicomponent Alloys

Instead of modeling the diffusion in the liquid and solid phases in the mushy region of a casting,
a simpler approach is commonly used as a good approximation for alloys whose solid phases are
substitutional solid solutions. In any small volume of the mushy region whose temperature can be
considered as uniform, it is reasonable to treat the liquid as uniformly mixed and the solid
concentration as unaltered once frozen. In this approach, the Gibbs-Thomson effect and transport
of solute in or out of the volume under consideration either by diffusion or convection are also
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Figure 1 - Fraction solid vs. temperature for (i) Ni-
15at%Al-2at%Ta, (ii)  Ni-18at%Al-1at%Ta and (iii)
Ni-9at%Al-8at%Ta with no solid diffusion (Scheil
limit) & with complete solid diffusion (Lever limit).

neglected. The beauty of this approach is its independence on the rate of cooling and on the details
of the microgeometry of the liquid and solid regions within the volume of interest.

The Scheil path can be computed quite simply using the LEVER subroutine. At each specified
temperature step during cooling, one computes the fraction of liquid, fL, and the fractions of each
solid phase, f

�
, the concentration of the remaining liquid and the concentration of each solid phase

formed during the step by the following procedure. Call LEVER, using an overall concentration
equal to the liquid concentration from the previous step and using  the temperature of the present
step. Update the remaining liquid concentration as equal to the liquid concentration output from
LEVER. Compute the increments of each phase formed � f

�
 as fL  f�� where fL is the fraction liquid

remaining from the previous step and  f
�
� is the phase fraction of each solid phase � on the list

obtained from the call to LEVER. Update the phase fractions amounts.
 
This procedure naturally treats the appearance of new phases at eutectic reactions, or the
disappearance of phases at peritectic reactions. It determines the transition temperature to an
accuracy determined by size of the temperature step used for the calculation during cooling.  The
precise transition temperature can be found by determining the temperature where the phase
fraction of a new phase is exactly zero. Such a procedure is used in the computation of the Scheil
path as performed in Thermo-Calc (11).

It is worth commenting on reactions with peritectic character. These include “reactions” such as
L+� � �, L+� � � + � and  L+� +� � �, and higher order reactions, which may occur at a fixed
temperature or over a range of temperatures depending on the number of components according
to the phase rule. In all of the “reactions,” one or more solid phases are consumed and replaced by
another solid phase or phases. Whereas three mechanisms can form these new phases via peritectic
“reaction”(2), all but one requires some diffusion in the solid, which to be consistent with the
assumptions of the Scheil approach, must be ignored. Indeed most important for substitutional
alloys is the formation of  the new solid
phase or phases directly from the melt.
Thus when the solidification path
encounters a “reaction” with peritectic
character, the amount and concentration
profile of the  “consumed” phase becomes
fixed and solidification of the remaining
liquid proceeds with formation of the new
phase or phases directly from the melt.

As an example, three Ni-Al-Ta alloys are
chosen to give quite different
solidification paths: (i) Ni-15at%Al-
2at%Ta, (ii) Ni-20at%Al-1at%Ta and (iii)
Ni-9at%Al-8at%Ta. The fraction solid vs.
temperature relations for Equilibrium
(Lever Law) and Scheil solidification were
calculated using the database given by (12)
and are given in Fig. 1.  The liquid
concentration paths are shown in Fig. 2
superimposed on the phase diagram. The
primary phase for all alloys is the FCC-�
phase and is the only phase to form in each
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alloy under equilibrium conditions. Under
Scheil conditions, all three alloys
encounter the �+�� monovariant eutectic
at points (a) in Figs. 1 and 2. Due to the
temperature maximum in the monovariant
eutectic line (shown by the bold dot),
alloy (i) follows the monovariant eutectic
line toward the binary Ni-Al side starting
at a fraction solid of 0.79 and 1393�C.
This line changes character to a
monovariant peritectic line near the
binary, but the fraction solid reaches
0.999 (taken as the end of solidification)
before this point. The path for alloy (ii)
does indeed reach this point and wanders
off of the monovariant line (pt. b),
following the surface of solidification of
��. Thus �� in this alloy would be formed
both by “eutectic” and “peritectic”
solidification, although it may be difficult
to distinguish microstructurally. Finally a
very small (0.01 mole fraction) of the �
(B2-NiAl) phase is formed by the
monovariant eutectic reaction, L���+�
near pt. c. For alloy (iii), the monovariant
eutectic line, �+��, is followed in the other
direction, toward higher Ta content
starting at a fraction solid of 0.66 and
1381�C. At  a fraction solid of 0.98 and
1366�C, the path encounters the four
phase reaction, L+����+� (pt. d in Fig. 1
& 2). Under Scheil assumptions the
fraction and concentration profile in the ��
phase becomes fixed and solidification
continues along the monovariant �+�
eutectic line. Finally at a fraction solid of
0.997, solidification is completed with the
ternary eutectic reaction, L��+�+Ni3Ta at
1360�C (point e in Figs 1 & 2). Fig. 3
shows the composition of the individual
solid phases for alloy (iii) as a function of
total fraction solid and represents the final
microsegregation pattern in the solid.

Finally a comment on metastable solidification paths is appropriate. Suppose that, in a complex
solidification path involving many secondary phases, experimental information is obtained that a
particular phase predicted by the Scheil analysis is absent in the microstructure. One approach to
providing a solidification path is to assume that this phase has difficulty in nucleating. A  new
Scheil computation can be performed excluding this phase from the thermodynamic database. An
obvious example is the exclusion of graphite from the solidification path in white cast irons.

Figure 2 - (a) & (b) Solidification path (Al vs. Ta
liquid concentration during cooling) in the Scheil
limit superimposed on the Ni-rich corner of Ni-Al-
Ta phase diagram for alloys (i) Ni-15at%Al-
2at%Ta, (ii) Ni-18at%Al-1at%Ta  and (iii) Ni-
9at%Al-8at%Ta.
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Figure 3 -  Solid phase compositions vs. total fraction solid
for  alloy (iii) Ni-9at%Al-8at%Ta. The �-phase is Ni6AlTa.
The Ni3Ta phase is not shown.

Enthalpy and Density Predictions

The enthalpy-temperature relation, H(T), is very important in macroscopic modeling of heat
transfer in castings. It is computed according to

H(T ) � fL HL(CLi , T )��
�

f
�

H
�
(<C

� i >, T ) (3)

where HL and H
�
 are the enthalpies per unit mass or mole of the liquid phase and solid phases. Due

to the microsegregation in the solid phases, the enthalpy of the solid phases is computed at each
temperature with a call to the subroutine, HEAT, based on their average concentrations, <C

�i>
existing at that temperature. During computation of the Scheil solidification path described above,
the change in average concentrations of each solid phase at each temperature step, �<C

�i> are
computed from �<C

� i> =�f
� (C� i - <C

� i>) / f
�

, using the value of <C
� i> and f

�
 from the

previous step and the value of C
� i from the current call to LEVER. When a new phase appears, the

initial value of <C
� i>  is set to C

� i obtained from LEVER.  In principle the concentration profiles
could be stored and a more exact computation of the solid phase enthalpies performed. 

The enthalpy of each phase and  the total enthalpy were computed for the Ni-9at%Al-8at%Ta alloy
for Scheil solidification as shown in Fig. 4. The difference in enthalpy between the liquid and each
solid phase is the heat of fusion for that phase. As is well known, the heat of fusion is larger for
intermetallic phases than for the chemically disordered phases such as �. The total enthalpy for a
Lever calculation is also shown for comparison. The phase enthalpies in this case are omitted for
clarity. Since heat flow codes that model castings require enthalpy/volume not enthalpy/mass or
mole, either density versus temperature or molar volume versus temperature data are required.
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Figure 4 - Total enthalpy and phase enthalpies as a
function of temperature during Scheil solidification
for Ni-9at%Al-8at%Ta. The dashed curve is the
total enthalpy for Equilibrium solidification.

Indeed, the density itself is of interest for
the modeling of fluid flow in the mushy
zone to predict macrosegregation and/or
porosity. In principle, the molar volume
of each phase can be treated in the same
manner as its free energy by combining
the values for the pure components and
evaluating volume of mixing terms.
Unfortunately no one has assembled
such a data base for multicomponent
alloys. Thus density data from other
sources must be used.

Recently Sung et al. (13) have analyzed
the densities, �L(CL i ,T) and �

�
(C

� i ,T)
of liquid and solid (�-phase) superalloys,
as functions of composition and
temperature using a regression analysis.
Using these results combined with an
analysis of the solidification path, the
liquid and �-phase densities can be
computed as a function of temperature
only. The average concentrations of the
solid phase can be used to compute the solid phase density as was done for the enthalpy.  The
overall density, allowing for the possibility of several solid phases and the formation of a volume
fraction of porosity,  fp, is

��(1�fP) 1

f M
L /�L��

�

f M
�

/�
�

(4)

where fL
M and f

�

M are mass fractions of the liquid phase and solid phases.  For the modeling of
microporosity, fP must be determined as a function of temperature by other considerations. For
example in the absence of dissolved gas, a simple model would calculate the porosity as that
required to reduce  the density change to a level where a negative pressure would not occur in the
fluid.

In the absence of porosity, Fig. 5 shows the computed densities vs. temperature for a Ni-6wt%Al-
8wt%Cr-6wt%Ta alloy. The solidification path has been computed with the Scheil assumption
using the Dupin thermodynamic database (12) and a revised Ni-Al-Cr ternary (14). Solidification
of � is followed by �+�� multivariant eutectic beginning at 1339°C with a switch at 1314°C to
another multivariant eutectic, � +�-NiAl, which completes solidification. Only a small fraction of
� forms (0.007). As shown in Fig. 5,  the liquid density decreases with cooling below the liquidus
while � and �+�� form, but increases sharply as �+� forms due to the large Al content of the �-NiAl
phase and the fact that very little liquid remains. The decreasing liquid density with decreasing
temperature can be a source of fluid flow instability and freckle formation during vertical
directional solidification. Schneider et al. (15) have performed finite difference convection
calculations of freckle formation using the SLOPE subroutine in a fully coupled manner. Also
shown in Fig. 5 are the solid density and total density. Because separate density relations for ��and
� are not available, we have computed their densities using the expression for �.
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CpdT�L
�
df

�
� dH (5)

fLdCLi�[<C
� i>�CLi]df

�
�f

�
d<C

� i> � 0 (6)

[<C
� i>�C

� i]df
�
�f

�
d<C

� i> �

12D
� idt

�
2
2 f

�

[C
� i�<C

� i>]               (7)

Figure 5 - Mass fraction solid, liquid density, solid density and overall
density (if no porosity forms) as a function of temperature for a Ni-6wtAl-
8wt%Cr-6wt%Ta alloy. The solidification path is predicted from a Scheil
analysis. The densities are computed using relationships established by
(13).

Effect of Solid Diffusion

Unlike calculations done with the Scheil approach, solid or back diffusion can not be treated
without assumptions regarding the microgeometry of the liquid plus solid region and the time
evolution of the fraction solid. During primary solidification, it is common to assume a plate,
cylindrical or spherical geometry for dendrite (arms)  to permit the treatment of diffusion in the
solid in one dimension. In some models, the fraction of solid is assumed to be parabolic in time.
Alternately, the evolution of fraction solid with time can be coupled to an enthalpy balance for
inclusion into a macroscopic heat flow code (16).

For a well mixed liquid, a system of simultaneous equations is solved for a given time increment
dt and enthalpy change dH.  The solution gives the change in temperature dT, consistent with the
solidification  model, as well as the changes in liquid concentrations dCL

i, solid phase fractions  df
�

,
average solid concentrations d<C

�

i> for each of the solutes and solid phases since the previous
time step. Rather than solving the diffusion equations in the solid, an approximation that follows
the approach of Wang and Beckermann (17) is quite useful, especially if coupling to a maco-model
is required.  For the case where a single solid phase � is forming, the following equations are
solved for the incremental quantities.
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�
n

1
m

� i dCLi�dT         (8)

Figure 6 - Effect of solid diffusion on the liquid
concentration path of  Ni-15at%Al-2at%Ta for
cooling rates ranging from 8 to 8x10-4 K/s. 

Figure 7 -  Effect of solid diffusion on the fraction
solid versus temperature curves for Ni-15at%Al-
2at%Ta for cooling rates ranging from 8 to 8 x10-4

K/s in powers of ten. 

where �2 is the secondary arm spacing and
D
� i are the solid diffusion coefficients.

Off-diagonal diffusion coefficients have
been neglected. Eqn. 5 guarantees that  the
enthalpy change is consistent with the
change in fraction solid through the latent
heat L

�
 and the change in temperature

through the heat capacity Cp. Eqn. 6 and 7
guarantee solute conservation in the entire
volume and the � phase, respectively.
Eqn. 8 guarantees that the liquid
concentrations remain on the � liquidus
using the liquidus slopes, m

� i . 

The above treatment only deals with the
primary solidification product. The
treatment of solid diffusion during
solidification involving multivariant
eutectic or peritectic reactions requires
additional assumptions about the
solidification geometry that have only
been attempted by a few authors (18-20).
In the present calculations at each time
step, the solution procedure checks the
phase stability using the LEVER
subroutine for the current temperature and
liquid concentration and updates the list of
solid phases forming. After primary
solidification is completed, back diffusion
is ignored.

Quantitative results for fixed cooling rates
(not using Eqn. 5) are shown in Fig. 6 and
7 for the Ni-15at%Al-2at%Ta alloy. The
fraction solid vs. temperature curves lie
much closer to the Scheil limit than to the
lever limit. The liquid concentration paths
bend towards increased Ta levels as the
cooling rate is decreased from the Scheil
limit because D

�

Ta<D
�

Al, despite the fact
that the lever path lies at lower Ta levels
(see below). The cooloing rate
dependence of the end points for
solidification (here taken as fs=0.998) is
also shown. The final fraction of ��
decreases from 0.13 to 0.10 as the cooling
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Figure 8 -  Schematic representation of the
change in solidification path shape for the
primary phase depending on cooling rate when
the solid diffusion coefficients of the solutes in
the solid are unequal, DS

1<DS
2. Also shown are

the intersection of the solidification paths with
eutectic valleys with two different orientations.
In  a) the fraction of eutectic would decrease and
in b) the fraction of eutectic would increase as
the cooling rate is decreased from the Scheil
limit.

rate decreases over the indicated range. The cooling rate was used to set �2 following a fit to data
for Ni-base alloys given by (21). The values chosen for D

�

i were the same as those used in (22). 

It is interesting to explore some general features of solid diffusion during solidification of
multicomponent alloys for unequal values of the solid diffusion coefficients. To isolate the effects
of such differences, Fig. 8 shows schematic solidification paths for the primary phase for a ternary
system where the liquidus slopes and
partition coefficients are constant and equal
respectively for the two solutes. Thus, the
Scheil and lever solidification paths are
straight lines with slopes of unity on a
Cartesian plot of the two solute
concentrations. The beginning point of both
paths is the initial liquid concentration. The
end points of the two paths (taken as fs = 0.99
say) path are different. Also indicated are
several paths for decreasing cooling rates if
DS

1<DS
2.  For the purpose of this discussion,

the paths are drawn for the primary phase
only and thus some paths extend beyond the
eutectic valley along the extrapolated primary
liquidus surface. The paths will bend toward
increased levels of component #1. The locus
of the end points for decreasing cooling rates
swings away from the Scheil path but must
eventually return to the end pont for the lever
path in the limit of very slow cooling.  In a
case of unequal m's and/or k’s, if the end
point of the lever path is, for example, above
the Scheil path, the locus of end points would
swing below the Scheil path before crossing
over the Scheil path as the cooling rate is
decreased. This occurs in Fig. 7.

These trends can produce results not possible
in binary systems regarding the effect of solid
diffusion on the fraction of second phases.
Fig. 8 also shows how the paths might
intersect eutectic valleys that have different
orientations with respect to the solidification
path. In Fig. 8a, decreasing the cooling rate
would increase the value of fs where the path
hits the eutectic valley. This will decrease the
fraction of eutectic in the final
microstructure. In Fig. 8b, the path intersects
the eutectic valley at smaller values of  fs as
the cooling rate is initially decreased from the
Scheil limit. The fraction of eutectic would
first increase and then decrease as the cooling
rate is decreased.
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Effect of Dendrite Tip Kinetics

Tip Conditions - In the above discussion, transport of solute in the liquid phase was assumed to
be sufficiently rapid that the liquid could be considered uniform in concentration during cooling.
Including liquid diffusion through a consideration of the kinetics of dendritic growth lead to a
lowering of the temperature where solidification first begins.

The equations that govern the dendritic growth of the primary phase of an n-component alloy with
(n-1) concentrations, C0 i , at velocity, V, and temperature gradient, G, have been derived by several
authors (23, 24).  The values of the (n-1) concentrations at the dendrite tip, CL i

*, differ from the
nominal alloy concentrations due to the requirements for liquid diffusion. Solution of the governing
equations, which involve the Ivantsov diffusion solution in the liquid and the marginal stability
analysis of the tip radius, is accomplished using the subroutine SLOPE to determine TL, ki and mi
at CL i

*. for the solid phase growing dendritically. Examples of the undercooling-velocity relationship
obtained by this procedure are shown in ref. (25). The results for zero temperature gradient would
be  customarily used for the simulation of equiaxed castings and for the cellular automaton
simulations of  Gandin and Rappaz (26).  The tip speed vs. temperature relation can be fit with a
polynomial function to reduce computation times.

Subsequent Solidification Path - Coupling of the dendrite tip analysis to the description of the
solidification path at temperatures below the dendrite tip temperature have been performed for
binary alloys by several authors (17, 27, 28). Frequently, however, a simpler approach is used to
couple the dendrite tip analysis to the remainder of the solidification path.

The "truncated Scheil" method, proposed by Flood and Hunt (29), develops the fraction solid vs.
temperature curve by assuming that, during cooling, the fraction of solid jumps from zero to the
value given by the standard Scheil analysis at the temperature at which the dendrite tip is operating.
This approach is extremely attractive for its simplicity and has been employed by Gandin and
Rappaz (26).  With this approach the effect of dendrite tip kinetics on the variations in fraction of
second phases can not be determined because the total amount of solute is not conserved.

This deficiency can be corrected by an alternate procedure (25) that makes a call to LEVER at the
temperature of the dendrite tip for an overall concentration equal to the initial alloy concentration.
This gives a fraction of solid that should form in the tip region and also determines the
concentrations of the remaining liquid just behind the tip region. The liquid concentration and
fraction solid so obtained are then used as the initial values for  a subsequent solidification path
calculation using the methods described above. This procedure conserves solute if the liquid
diffusion coefficients are equal and the effect of the Gibbs-Thomson effect on the tip concentration
can be neglected. In other words,  the liquid concentration obtained from the call to LEVER will
equal the liquid concentration at the tip, CL i

* . For slow dendritic growth rates however, the simpler
"truncated Scheil" approach is an excellent approximation for many cases (25). A  full coupling
of macroscopic heat flow and the dendrite tip undercooling and speed for columnar growth has
been performed by  M'Hamdi et al. (30).

Conclusion

Phase diagram information for multicomponent alloys, which is computed through a
thermodynamic approach, has been coupled to various solidification models to predict the
solidification path and associated enthalpy and density changes.
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