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Reaction-Controlled Morphology of Phase-Separating Mixtures
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The role of externally-controlled chemical reactions in the selection of patterns in phase-separating
mixtures is presented. Linearized theory and computer simulation show that the initial long-wavelength
instability characteristic of spinodal decomposition is suppressed by chemical reactions, which restrict
domain growth to intermediate length scales even in the late stages of phase separation. Our findings
suggest that such reactions may provide a novel way to stabilize and tune the steady-state morphology
of phase-separating materials.

PACS numbers: 64.60.Cn, 47.54.+r, 61.41.+e, 64.75.+g

Pattern formation in reaction-diffusion systems occurs nsA + ngB ‘L_‘ neC, 1)
throughout nature. It is well known, for example, that spi- )

ral waves and other interesting steady-state patterns can bere ', and I’ are the temperature-dependent forward
generated by simple chemical reactions [1]. In contrastand backward reaction rates, respectively, andnthare
transient patterns are formed during phase separation hiie stoichiometric coefficients. The equations of motion
spinodal decomposition in both small molecule and polyfor the concentratiorp;(x, t) of component are

mer mixtures [2,3]. These patterns, whose characteristica¢
length scale depends on the specificity of the components—2
of the mixture, coarsen and disappear when macroscopic
phase separation is achieved at asymptotically long timesy ¢,

=V - Ja — nalidy" dp” + nalape” + ha,

It would be desirable to devise a mechanism by which these ;,~ — —V o Jp —neliga'ds” + nplae” + g, (2)
phase-separating morphologies could be stabilized. In this

Letter, we argue that chemical reactions can be used to std$c _ —V - Jo + nelidh dp — neTadeS + he

bilize and tune the characteristic length scale of patterns 9¢ ’
arising in phase-separating materials. Unlike the usual scggnerey, = — > M;j(5F/86)), F is the free energy func-

nario of spinodal decomposition, where concentration fluctjonal appropriate to the mixture, and thes are reac-
tuations of all length scales larger than a certain critication terms arising from spatial inhomogeneities. Alternate
length scale spontaneously grow with time, we show thagpproaches to the coupling of diffusion and chemical reac-
chemical reactions introdud®vo cutoff lengths, thereby tions are possible [9]. In these equations, the local trans-
restricting the growth of fluctuations to a narrow range Ofport of heat and momentum, which in general couple to
length scales. Pattern tunability is achieved through apmass flow [10], has been ignored. The essential physics
propriate selection of the rate constants governing the eXinderlying the stabilization and tunability of pattern for-
ternally controlled chemical reactions [4]. Interestingly, mation in phase-separating materials can be illustrated by

our simplest model describing this phenomenon results igonsidering a simpler, two-component system undergoing
an equation identical in form to an empirical equation usedhe following reaction:

to model microphase separation in block copolymer melts
[5] and other systems [6] where short-range attractive and A é B. (3)
long-range repulsive interactions compete. However, un- I
like the majority of these pattern-selecting systems, chemithe equation of motion for this immiscible, chemically
cal reactions offer a tremendous opportunity to controkeactive system is [11]
the final morphology of phase-separated materials, espe- o SF{¢}
cially polymers. Since the kinetics of spinodal decompo- — =MV ——=
sition in polymer mixtures and small molecule mixtures ot 8¢
is similar in many respects [7], for simplicity we focus where we have dropped the subscrigt’ “on the lo-
here on the effect of chemical reactions on small moleculeal concentratiop and assume incompressibilityp{ +
systems [8]. ¢p = 1). Quenching below the spinodal temperature will
Consider a mixture of molecules of types and result in demixing via spinodal decomposition and, simul-
B which has been quenched to a thermodynamicallfaneously, mixing via the reaction=B.
unstable state, and which simultaneously undergoes the The free energy functionak{¢} is typically written
reaction [4] as the sum of the bulk free energy(¢), which has a
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double-well structure below the critical point, and thelengths (smallk) are suppressed by the reactions. Such
usual square-gradient approximation to the interfacial fresuppression of long-wavelength fluctuations is a natural
energy [2,3,12]. For small molecules mixtures, Eq. (4)mechanism for pattern selection in a variety of systems
can be written as [13] [1,5,6], such as block copolymers. The mathematical ori-
0 o of , gin of the similarity between spinodal decomposition with
Fre AV (ﬁ — 2kV ¢> — ('t + T¢ + Iy, (5)  chemical reactions and ordering of block copolymers lies
in the fact that a term linear ig in dynamics [Eq. (5)]
whereA = MkgT andf(¢) has been divided biT. We  can be absorbed into a redefined free energy functional as
linearize Eq. (5) about the initial average concentratioran additional nonlocal quadratic coupling ¢fs [5,15].

before the quenchyp,, and replacep by ¢y + 6¢, where Our analysis shows that due to the reactions, only fluc-
8¢ is a small perturbation abou, [2]. After Fourier tuations at an intermediate length scale grow initially.
transforming, we obtain However, solution of the full nonlinear equation is nec-

98 b . , ~ essary to expllc.Jre the Igter stages of phase sepa(ation yvhen

5, ReAEKe = &) = (T + 12)]8 ¢ the nonlinearities are important [15]. We numerically in-

tegrated Eq. (5) on a two-dimensional lattice witty),
+ [T = (I + T2)eold(k), (6)  the bulk free energy, taken as that for an incompressible,

where (92f/a¢?)4, < 0 in the two-phase regiony, =  Small molecule mixture,

(I 2f/a¢? | ,/2K)"/?, ands (k) = 0(1) whenk # 0 (k =
0). For nonzero values df, this equation is solved by a A _ édIng + (1 — d)In(l — @) + yop(1 — ¢),

simple exponential function [14], ksT
8pi(t) = 5pr(0)e” ™, (7) ®)
with the growth rate where the dimensionless interaction parameterre-

lates the interaction energies between the two species
(k) = 2AR* (ke = k%) = (Iy + T2). B of molecules [12]. We takec = xA2, where A is the
Figure 1 shows the growth factas(k) for spinodal de- average range of the intermolecular interaction [12,16].
composition both with and without chemistry. Without Equation (5) can then be written as
chemistry (", = I’ = 0), the growth factor is the usual
one predicted from Cahn’s linear theory, with a cutoff 9¢ _ AV{In( ¢ ) — 2y — 2 Aszd)}
at large wave vectok.. Thus concentration fluctuations ot 1—¢ X X
with k > k. decay and those with < k. grow, with the — (T, + To)¢ + . (10)
maximum growth rate occurring fdr, = k./~/2. How-
ever, the simultaneous occurrence of the reacienB  Our simulations were performed by discretizing Eq. (10)
decreases the usual growth factor by an amount propousing a simple finite difference scheme in two dimensions.
tional to the sum of the forward and backward reactionComputational details of the integration method will be
ratesI'; andI',. This shifts the small-wavelength cutoff given elsewhere [7].
to larger wavelengths, and introduces a large-wavelength The critical point of the free energy in Eq. (9) is given
cutoff. Thus concentration fluctuations at large wavety ¢. = 1/2 and y. = 2. The concentration at each
lattice site was initialized t@ = 1/2 = §¢, whered ¢ is
a random number in the ran@e0.0001,0.0001]. Lattices
® - of size256% and larger were then quenchedyto= 4.0 for
various choices of equal forward and backward reaction
Lo ratesT’; andT’, (zero heat of reaction is implied). When
7 \ I'y = I'; = 0, the system phase separates in the usual way
S N [3,17]. This system is shown in Fig. 2 in the late stages
K of phase separation after a time ¢a)y 512 and (b)7 =
2048. Figures 3(a) and 3(b) show the same system as in
Fig. 2(b) atr = 2048, but withT'; = I', = 0.05 and 0.2,
respectively. Clearly, the steady-state, lamellar structure
exhibited by the reactive systems in Figs. 3(a) and 3(b)
is very different from the transient, interconnected, self-
similar morphology of the nonreactive mixture in Fig. 2.
FIG. 1. Early-time growth factow (k) vs wave vectok, both We measured the average domain stz by calculat-
with (dotted line) and without (solid line) chemistry. In the 4 118] the inverse of the first moment of the structure
absence of chemical reactions, concentration fluctuations Z%gctor S(k.1), for various choices of reaction rates. For
all wave vectorsk < k. grow. Chemical reactions introduce >t - :
cutoffs both at larget and small k, so that growth occurs only €ach system, the reaction rates were chosen to be equal:
for intermediate-wavelength fluctuations. I' =T, =T. In the absence of chemistry' (= 0) the
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(b)

FIG. 2. Concentration field foz56* lattice at a time (ay =  FIG. 3. Concentration field faz56? lattice at a timer = 2048

512 and (b) 7 = 2048 following a quench of Eg. (10) to the following a quench of Eq. (10) to the unstable region, with

unstable region, in the absence of chemical reactions (i.ereaction rates (a]' = 0.05 and (b)I' = 0.20. A-rich regions

I =T, =0). A-rich regions are shown black ang-rich  are shown black ana@-rich regions are shown grey. Further

regions are shown grey. evolution of the system tends to align domains, but the steady-
state domain width has already been selected.

system exhibits the expected Lifshitz-Slyozov [19] growth

law at late times, Indeed, we find thatr appears to be approaching3 for

R(t) ~ 17, (11)  small reaction rates [20]. Thus, the simultaneous presence
wherea = 0.32 + 0.02 [17]. However, for nonzero reac- Of the chemical reaction=B selects intermediate length

tion rate, the domain growth saturates at a certain steadyc@les for growth, even in the late stages of spinodal
state valueRy. In the steady state, dimensional analysisdecomposition [21]. _
of Eq. (10) shows thafs] = [1/T], so that the domain The suppression of Iong—wavelgngth fluctuations by thc_’e
size Ry should obey the scaling law !nterpl_a_y betwe_en chemlc_:al reactions and_ thermodynamic
N instability provides a ubiquitous mechanism for pattern
Rp ~ (1/D)%. (12)  selection in nature. The underlying mechanism for pat-
The steady-state inverse domain siz€ is plotted double tern selection in typical reaction-diffusion systems arises
logarithmically against the reaction raté in Fig. 4. from a competition between diffusion and chemical re-
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4. Double logarithmic plot of equilibrium inverse aver-

age domain siz&;' vsI'. The straight line has slope/3.
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