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MATERIALS MOTIVATION
Elucidate the role of heterogeneous, stochastic
microstructures on bulk physical properties and 
microstructural damage evolution.
Correlate physical properties and damage 
evolution with microstructure

to shorten the materials development cycle
to improve materials & processing
to enable more reliable design

APPROACH: Develop computational tools for simulat-
ing multifunctional properties & elucidating influences 
of stochastic, anisotropic microstructural features on 
physical properties and damage evolution processes.
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CONTENTS:
Microstructural Finite-Element Analysis
Physical Property Simulations
o Coefficient of Thermal Expansion
o Elasticity
o Thermal Conductivity

Residual Stresses & Nonlinear Processes
o TEA induced residual stresses
o damage simulations
o domain switching in ferroelectrics
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Public domain software to simulate 
and elucidate macroscopic properties 
of complex materials microstructures

http://www.ctcms.nist.gov/oof

Object Oriented Finite
Element Analysis

for Materials Science and Engineering
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Building a Microstructural Model
SimulationsExperiments

Visualization of 
Microstructural Physics

Virtual Parametric
Experiments

Effective Macroscopic
Physical Properties

Fundamental
Materials Data

Materials
Physics

Microstructure Data
(micrographs)

easy-to-use Graphical User Interface (GUI) – ppm2oof

Object Structure
Isomorphic to the Material

Finite Element Solver

easy-to-use Graphical User Interface (GUI) – oof
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Finite Element Analysis of Real Microstructures
a tool for materials scientists

to design and analyze advanced materials

ppm2oof: a tool to convert a 
micrograph or image of a complex, 
heterogeneous microstructure 
into a finite element mesh with 
constitutive properties specified 
by the user.

Point, Click,
and Specify
Properties

Real ( or
Simulated)

Microstructure

oof: a tool to perform virtual experi-
ments via finite element analysis to 
elucidate microstructural properties 
and macroscopic behavior.

Visualize and
QuantifyVirtual Test

δT

oof2abaqus: converts 
PPM2OOF or OOF data files 
into input files for ABAQUS™.
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PPM2OOF Tool

Convert micrograph to “.ppm” (portable pixel map) file
Select & identify phases to create segmented image
Assign constitutive physical properties to each phase
Mesh in PPM2OOF via “Simple Mesh” or “Adaptive 
Mesh” – multiple algorithms that allow elements to 
adapt to the microstructure

Mesh Segmented Image 

Micrograph



Adaptive Meshing by Components: refine 
elements and move nodes via Monte Carlo 

annealing to reduce E = (1-α)Eshape + α Ehomogeneity
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Adaptive Meshing by Components: refine 
elements and move nodes via Monte Carlo 

annealing to reduce E = (1-α)Eshape + α Ehomogeneity

swap worst
to reduce E

create
mesh

anneal to
reduce Eimage



Adaptive Meshing by Components

Generate a finite-element mesh
following the material boundaries

pixel image
with mesh

pixel
image

mesh



OOF Tool

Perform virtual experiments on finite-element mesh:
To determine effective macroscopic properties
To elucidate parametric influences
To visualize microstructural physics

Visualize & Quantify:
Heat Flux Distribution

Virtual Experiments:
Temperature Gradient

To - δT

To + δT

Materials Science & Engineering Laboratory



OOF 2.0 Current Development Effort
Stephen A. Langer & Andrew C. E. Reid
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Extensible and more flexible platform
Enhanced image analysis tools
Expanded element types
Generalized constitutive relations (elasticity, 
piezoelectricity, etc.) w/coupling between fields

Linear and nonlinear solvers 
with automatic mesh refinement

Planned Additions
3-dimensional finite element solver
Time-dependent solver Plasticity

• Ψ = fEquil. Eq.: Ψ = Σ c • φConstitutive Eq.:



OOF2 Materials Menu
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CONTENTS:
Microstructural Finite-Element Analysis
Physical Property Simulations
o Coefficient of Thermal Expansion
o Elasticity
o Thermal Conductivity

Residual Stresses & Nonlinear Processes
o TEA induced residual stresses
o damage simulations
o domain switching in ferroelectrics
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Elastic Modulus and CTE
of Double Cemented Carbides 

conventionally cemented
carbide microstructure

double cemented
carbide microstructure

300 µm

21 vol.% 
matrix

B. V. Patel, K. K. Chawla, M. Koopman, X. Deng, B. R. Patterson
Univ. of Alabama at Birmingham

Motivation:  Accelerated development of advanced material 
microstructures for drilling applications (Smith International, Houston)

21 vol.% 
matrix

10 µm
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Coefficient of Thermal Expansion (CTE)
Dilatometer & OOF
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Elastic Modulus
Resonance Ultrasound Spectroscopy & OOF
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Optimization of Low Conductivity
EB-DVD Microstructures

Yougen Yang, Derek D. Hass, & Haydn N. G. Wadley, Univ. of Virginia

Electron-Beam Directed 
Vapor Deposition coating 
microstructure via kinetic 
Monte Carlo simulation

substrate was periodically 
inclined to the vapor flux

Deposition at
T/Tm = 0.23

Annealed at
T/Tm = 0.43



Effective Thermal Conductivity

refined
adapted
mesh
annealed
simple
mesh

+0.5

0.0

-0.5
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Thermal Conductivity Simulations
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CONTENTS:
Microstructural Finite-Element Analysis
Physical Property Simulations
o Coefficient of Thermal Expansion
o Elasticity
o Thermal Conductivity

Residual Stresses & Nonlinear Processes
o TEA induced residual stresses
o damage simulations
o domain switching in ferroelectrics
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Residual Stress Distributions

Kovar contact
Kovar washer

Alumina

Kovar sleeve

Header

Ag braze

Residual Stresses:
• Due to CTE-mismatch
• Due to CTE-anisotropy

-

+

0

-

+

0

Motivation:  Reliability of Ceramic-Containing Components
(residual stresses can cause spontaneous microcracking and 

influence R-curve behavior & crack propagation under applied loads)

Materials Science & Engineering Laboratory

Venkata R. Vedula, Shekhar Kamat & S. Jill Glass, Sandia National Laboratories
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Cooling from
strain-free

temperature

Origin of Microstructural Stresses: 
Thermal Expansion Anisotropy Misfit Strains

< Microstresses are independent of grain size >
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Alumina Microstructure via OIM

Untextured
(MRD=2)

Textured
(MRD=90)

Grain Normals

V.R. Vedula, S.J. Glass, D.M. Saylor, G.S. Rohrer, W.C. Carter, S.A. Langer, and 
E.R. Fuller, Jr., J. Am. Ceram. Soc., 84 [12], 2947-2954 (2001).
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Residual Stress Distribution in 
Untextured Alumina (∆T = -1500°C)

OIM
microstructure

[ σxx + σyy ]
(MPa)

Max. Principal
Stress (MPa)
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Influence of Grain 
Misorientation 

Distribution Function

low-angle GB’s
uniform

high-angle GB’s

400 MPa0

35.3 ± 1.0 kJ/m3

32.3 ± 1.9 kJ/m3

23.7 ± 2.4 kJ/m3

for a random grain orientation 
distribution function

maximum principal stress for a random 
grain orientation distribution function

David M. Saylor, NIST & Thomas Weiß, Universität Göttingen,
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Stress Invariant (σ11 + σ22) for ∆T = -1500 °C

Residual Stresses in Alumina

+567

+300

+  33

-234

-501

-767

Untextured (MRD=2)

+532

+299

+  66

-167

-401

-635

Textured (MRD=90)

plane stress with free boundary conditions
total number of elements = 117,612
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Residual Stress Distributions

# of Elements with |σ11+σ22| > 300 MPa
Random = 2563 (≅ 2.2%)

Textured = 221   (≅ 0.2%)
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Morphologic versus Crystallographic 
Texture in Alumina

Experimental Microstructures

100

Aspect Ratio:
MRD:

1:1 4:1 8:1
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Residual Stress Distributions
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Nonlinear Simulations
elucidate dependence of nonlinear processes in 
heterogeneous, stochastic microstructures on 
crystalline properties, morphology and texture

André Zimmermann, W. Craig Carter, and Edwin R. Fuller, Jr., 
Acta Materialia, 49 [1], 127-137 (2001).

grain-boundary microcracks

decreasing temperature

Microcrack Formation in Alumina
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Damage versus Misfit Strain
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Thermal Degradation of Marbles

Thomas Weiß and Siegfried Siegesmund, Universität Göttingen, Germany

#ofmicrocrackedelements(do)

#ofmicrocrackedelements(cc)

bowing of 
façade 

claddings

foliation

foliation

cracking along foliation

microcracking in calcite 
marble for ∆T = +100°C

dolomite marble 
microstructure



Ra
n1

Texture Effects
Different randomly 
generated textures 

produce ...

...different CTE‘s and 
fracture patterns
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T. Weiss, S. Siegesmund, and E.R. Fuller, Jr., in "Natural Stone, Weathering 
Phenomena, Conservation Strategies and Case Studies," Geological Society 
London Special Publication, No. 205, edited by S. Siegesmund, A. Vollbrecht 
and T. Weiss, (The Geological Society of London, 2003). pp. 81-94.
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CTE anisotropy
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Definition of a Ferroelastic Crystal
“a crystal is said to be ferroelastic when it has 
two or more orientation states in the absence of 
mechanical stress and can be shifted from one to 
another of these states by mechanical stress”

Cubic to Tetragonal
Phase Transformation

Mechanically-Induced
Switching

Principles and Applications of Ferroelectrics and Related Materials, 
M. E. Lines and A. M. Glass (Clarendon Press, Oxford, 1977), p. 14.



90° Domain Switching in a 
Polycrystalline Ceramic

State 1 State 2

c-axis

Possible states for N domains:
3N for 3-D and  2N for 2-D
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Macroscopic Stress-Strain Curve

[R020_06]
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SUMMARY:
A suite of object-oriented finite element (OOF ) 
tools are being developed for simulating physical 
properties and nonlinear behavior of heterogeneous, 
stochastic microstructures
Computer simulations of physical properties and 
nonlinear behavior provide a new paradigm for 
empirical materials research on complex materials
These tools are being used to elucidate 
microstructural influences on CTE, elasticity, 
thermal conductivity, residual stresses, damage 
behavior, ferroelectric behavior, chemical 
diffusivity, etc. of complex systems

Predicting Physical Properties From Microstructures

Materials Science & Engineering Laboratory



Abstract
Predicting Physical Properties From Microstructures

Edwin R. Fuller, Jr.
National Institute of Standards and Technology,

Gaithersburg, Maryland 20899-8520, U.S.A.
Point-to-point knowledge of the physical and mechanical properties of 
multifunctional materials is crucial in the design and reliability of components using 
these materials. However, such property measurements generally are time 
consuming and require special expertise. Furthermore, many measurements are 
typically required to qualify new materials. Accordingly, the development cycle for 
new materials and processes has not kept pace with the component development 
cycle. Computational tools provide a stratagem for shortening the material and 
process development time. Such a computational tool, called OOF, is being developed 
at NIST. OOF, which stands for Object Oriented Finite element analysis, is a 
computational tool that allows material scientists to simulate physical properties of 
complex microstructures from an image of that microstructure. Examples will be 
presented of applications of OOF to elucidate influences of stochastic 
microstructural features, such as, porosity and microcracks, on thermal and 
mechanical behavior, of thermal expansion anisotropies on residual-stress 
distributions and microcrack-damage evolution, and of ferroelastic transitions on 
domain switching behavior.
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