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GE’s 9H Gas TurbineGE’s 9H Gas Turbine

Combined-Cycle Performance
Net Output: 480 MW Compressor
Net Efficiency: 60% Pressure Ratio: 23:1
Firing Temperature: 2600ºF / 1430ºC Air Flow: 1510 lbs/sec

Materials Science & Engineering Laboratory



Materials Science & Engineering Laboratory

•In production since 1997 on 7FA class
coated multiple parts on H class in 1998
expanded to service market in 1999

first stage of industrial gas turbine

•Air Plasma-Spray (APS) process used 
for ZrO2 top coat
• bulk temperature reduction ( > 75°C) 

significantly increases creep life

•Vacuum Plasma-Spray (VPS) or
High Velocity Oxy-Fuel (HVOF) 
process used for MCrAlY bond coat

protection of substrate alloy from 
oxidation and hot corrosion

Thermal Barrier Coatings (TBC’s)
on Gas Turbine Buckets
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Two-layer structure:
ceramic top coat:  (ZrO2 + Y2O3) thermal barrier
metallic bond coat:  MCrAlY oxidation protection

Types of Thermal Barrier Coatings
and Deposition Processes

Two deposition processes:
air plasma spray (APS) & physical vapor deposition (PVD)

EB-PVD TBC’s
Advanced APS TBCConventional APS TBC

Air Plasma Sprayed TBC’s
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Industrial Needs
for TBC Life Modeling

• Translate laboratory results to engine
life models and life prediction

• Develop microstructural failure models 
to guide development of improved
materials and processing techniques

“… microstructurally-based models are needed,”

“…can be qualitative or quantitative”
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Micromechanical Damage Model
Freborg et al. proposed a failure scenario based

on the stress reversal above asperities with TGO growth.
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Spallation Failure Mechanism
for Thermal Barrier Coating

Metal

Ceramic TBC: Stress Free 
at Temperature

cooling

Tension

Compression

Metal

Substrate: 
Mechanically 
Loaded

High-Temperature OperationStresses in TBC-
Substrate System:

Result from mechanical 
loading, thermal expansion 
mismatch, & TGO growth

Stress relaxation time in 
TBC is short compared to 
engine operation time, but 
long compared to engine 
cool-down time

TGO

TGO

heating

Low-Temperature Shutdown
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Spallation Failure Mechanism
for Thermal Barrier Coating

Ceramic

Tension

Compression
large inter-
facial flaw

TBC: Stress Free 
at Temperature

Substrate: 
Mechanically 
Loaded

cooling

Coating Failure: when 
pieces of the top coat spall

Damage accumulates near 
metal-ceramic interface 
due to mechanical, thermal 
expansion, & TGO growth 
stresses

When damage produces a 
critical-size crack, the top 
coat locally buckles and 
spalls, due to large in-plane 
stresses

TGO

Metal

Metal

TGO

High-Temperature Operation

heating

Low-Temperature Shutdown



Air Plasma Spray TBC on HVOF CoNiCrAlY
100 cycles

50 µm

740 cycles

50 µm

0 cycles

50 µm

350 cycles

50 µm
Courtesy of Jim Ruud, GE CR&D
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Residual Stresses
Above Asperities on Cooling

Tensile Normal 
Residual Stress

top coat

bond coat

NiCrAlY bond coat

air-plasma-sprayed 
8 wt% Y2O3 partially 

stabilized ZrO2 topcoat

René N5 substrate (not shown)
(Compressive In-Plane 

Residual Stress)
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Cooling from
strain-free
temperature

Residual Stresses 
from Thermal Misfit Strains

YSZ

Bond Coat

< CTE =10.0 ppm/K >

< CTE =15.2 ppm/K >
Bond Coat

YSZ
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Compressive Normal
Residual Stress

(Compressive In-Plane 
Residual Stress)
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Stress Reversal with TGO Growth

top coat

bond
coat

TGO

NiCrAlY bond coat

air-plasma-sprayed 
8 wt% Y2O3 partially 

stabilized ZrO2 topcoat

René N5 substrate (not shown)

α-Al2O3 thermally 
grown oxide scale
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Residual Stresses 
from Thermal Misfit Strains

Alumina
< CTE =8.0 ppm/K >

YSZ
< CTE =10.0 ppm/K >

Alumina

YSZ
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This Process Can Be Modeled 
With Three Concentric 

Spherical Shells

C.-H. Hsueh & E. R. Fuller, Jr.,
Scripta Mater., 42 (2000) 781.

YSZ CTE = 10.0

CTE 
= 8.0Bond Coat

CTE = 15.2

TGO
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Effective CTE of the Inner Two Shells
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Normalized TGO Thickness, (tTGO / RBC)
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Bond Coat and TGO

CTE of Bond Coat
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Residual Radial Interfacial Stress
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Normalized TGO Thickness, (tTGO / RBC)

RYSZ / RBC = 20

3 spheres

Bond Coat - TGO interface

TGO - YSZ interface

RYSZ / RBC = 5
RYSZ / RBC = 20

RYSZ / RBC = 5
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Failure Scenario based on
Stress Reversal above Asperities

with TGO Growth

Tensile Residual Stress
top coat

bond coat

Compressive Residual Stress
top coat

bond
coat

TGO

A. M. Freborg, B. L. Ferguson, W. J. Brindley, G. J. Petrus, "Modeling oxidation induced 
stresses in thermal barrier coatings," Mat Sci Eng A-Struct 245 [2]: 182-190 (1998).
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Fracture Mechanics Model
Determine crack stability from an appropriate 
set of fracture mechanics expressions:
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Crack Stability for Tensile Stresses

σ dx/w

KIC

KI(a/w)

x/w and a/w

σ(x/w)

x/w
a/wa/w
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Fracture Mechanics Model
Determine crack stability from an appropriate 
set of fracture mechanics expressions:

∫=
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c,
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Fazil Erdogan, “On the stress distribution in plates with collinear cuts under arbitrary loads,”
in Proceedings of Fourth U.S. National Congress of Applied Mechanics, pp. 547-553 (1962).
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crack closure due to
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Crack Stability
for Compressive Stresses

σ dx/w

KIC

KI(a/w)

x/w, c/w, and a/w

σ(x/w)

KIclosure(c/w, a/w)

crack closure

x/w
c/w
a/w

c/w

a/w
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Crack Stability
for Compressive Stresses

σ dx/w

KI(a/w)

x/w, c/w, and a/w

σ(x/w)

crack closure x/w
a/w

KI(a/w)
neglecting closure
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Three-Parameter Roughness Model
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after D. R. Clarke and W. Pompe, “Critical Radius for 
Interface Separation of a Compressively Stressed Film from 
a Rough Surface,” Acta mater., 47 [6], 1749-1756 (1999).
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Three-Parameter Roughness Model

(Rp+ Rv) = w / sin(Ψ)
h = w cot(Ψ)

peak-to-valley amplitude
2H = w tan(Ψ/2)

h
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RpΨ

tan(Ψ)
1

valley-to-peak curvature ratio: (Rp/Rv) 
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Factorial Experimental Design

twelve (12) simulated interface microstructures

wavelength, w

amplitude, H

curvature
ratio: Rp/Rv

60 µm

90 µm

45 µm

20 µm

0.5 1.0 2.0
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Only the roughness parameters 
H/w & Rp/Rv have a significant 
effect on the stress distribution

Residual Stress as a Function
of Microstructure: R p/R v
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Residual Stress versus Oxide Thickness
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Fracture Mechanics Results
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Influences of YSZ Microcrack Sintering
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Modeling Real Microstructures

normal stress: σ yy 

-1.5 GPa +1.5 GPa0
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Interface-Related
Damage Evolution in APS TBC’s

SUMMARY:
A damage evolution mechanism proposed by 
Freborg et al. was quantitatively analyzed with 
a fracture mechanics weight function approach 
Reversal in residual stress distribution above 
interface asperities drives damage evolution
Microstructural variables studied with a three 
parameter roughness model:

Wavelength Amplitude
Peak Sharpness TGO Thickness

Materials Science & Engineering Laboratory



SUMMARY:

Interface-Related
Damage Evolution in APS TBC’s

Crack closure enhances the crack-tip stress 
intensity factor
However, calculated KI-fields are still below 
the expected threshold for crack growth
Top coat sintering enhances damage evolution
Several other factors are under investigation, 
e.g., top coat sintering, TGO growth strain, 
bond coat creep, crack path
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Abstract

INTERFACE-RELATED DAMAGE EVOLUTION
IN AIR-PLASMA-SPRAYED THERMAL BARRIER COATINGS

Edwin R. Fuller, Jr.,* Mark R. Locatelli, and Ravi Kacker
National Institute of Standards and Technology
Gaithersburg, Maryland 20899-8520, U.S.A.

<edwin.fuller@nist.gov>

Spallation of air-plasma-sprayed (APS) thermal barrier coatings (TBC’s) typically 
stems from the damage that accumulates near the metal-ceramic and ceramic-
ceramic interfaces in these coatings. Damage evolution is driven by stresses 
perpendicular to the interface that result from rough interfaces in combination with 
thermal-expansion-anisotropy and oxide-growth strains. These stresses are 
incorporated into a fracture-mechanics weight-function formalism to quantify the 
driving forces for crack growth near the interface. Residual stresses as a function of 
interfacial structure are derived for both periodic and random structures, and are 
used to derive crack-driving, stress-intensity-factor fields as a function of the 
interfacial, thermally grown oxide (TGO) thickness, and other microstructural 
parameters. Residual stresses and associated stress intensity factors are presented 
for both model and real interfaces, attempting to identify critical microstructural 
features for predicting damage evolution, and hence, reliability of TBC's.
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