<u>H Diffusion through Pd and Pd-</u> <u>Alloy Membranes: Role of Non-</u> <u>ideality due to the</u> <u>Thermodynamic Factor</u>

Ted B. Flanagan University of Vermont, Burlington VT

(co-workers: D. Wang, K. Shanahan, S. Luo)

• H₂ and its isotopes are the only gases which dissolve to any extent in Pd and its alloys. The H₂ molecules must first undergo dissociative chemisorption which requires clean surfaces, free from poisons such as S, CO. This can be a problem when purifying H_2 from industrial gas streams. In our experiments with pure H_2 , this is not a problem and bulk diffusion is the slow step. After chemisorption, the H atoms enter into the octahedral interstices and diffuse interstitially through the metal lattices.

 The high mobility of H(D,T) in Pd and its alloys provides a means to purify H₂ and its isotopes by selective permeation through the Pd or Pd-alloy membranes.

Research on Non-Ideality in Pd-H and Pd-M-H Systems

Wicke and his students in Münster studied the diffusion of H in Pd and Pd-Ag alloys (298-373 K) in the 1960s using mainly electrochemical breakthrough techniques, i.e., time for a conc. perturbation on the upstream side of a membrane to appear on the downstream side. This can be used to obtain D_H at nearly constant H content. They were the first to systematically employ the thermodynamic factor to explain the dependence of D_H (Fick's diff. const) on the H content.

More recently (1989), Salomons in the Netherlands measured the dependence of D_H and E_D on the H content for Pd-, $Pd_{0.81}Cu_{0.19}$ - and $Pd_{0.91}Y_{0.09}$ -H alloys (400-600 K). He did not investigate the effect of alloy concentration on the dependence of D_H or E_D on H content.

Other Metal-H Systems

Non-ideality from the thermodynamic factor has been investigated in other metal-H systems, e.g., Nb-H, Ta-H and V-H, using mainly non-permeation techniques, e.g., NMR, quasi-elastic neutron scatt. and the Gorsky effect. The first two determine D_{H}^{*} (conc.indep. D) directly whereas the Gorsky effect measures D_{H} (Fick's). D_{H} can be determined from D_{H}^{*} for the two former techniques if the thermodynamic factor is known, e.g., from isotherms, and for the Gorsky technique, D_{H}^{*} can be obtained from D_{H} using the thermodynamic factor.

The conc.dep D_H is more important than D_H^* for practical H_2 separation and for H storage. Permeation through membranes is the important factor for H_2 separation/purification which depends on D_H and Δc_H . Metal-H systems are best suited for studying the role of nonideality because the solute concentration (H) can be varied over a wide range for some alloys and μ_H of the dissolved H is easy to determine from p_{H2} .

Why is this non-ideality relevant to H diffusion through membranes?

The conc.-dependent D_H can vary markedly with H conc. For example, Küssner (1967) found for H in Pd_{0.77}Ag_{0.23} that D_H(=D_H*)= 3.5×10^{-7} cm²/s at H/metal(=*r*) ≈ 0 , D_H= 0.6×10^{-7} cm²/s at *r*=0.16 and D_H= 7.3×10^{-7} cm²/s at r=0.355 (303 K), i.e., a change in D_H of a factor of $\approx 12 \times 10^{-7}$

At the critical point in M-H systems, e.g., $r \approx 0.27$, 563K, 19 bar for Pd-H, $D_H \rightarrow 0$ because the thermodynamic factor $\rightarrow 0$; this is called *critical slowing-down*. This is an extreme example of the role of the

thermodynamic factor.

Concentration dependence of the diffusion coefficient of H in Pd/Ag (77/23) at 30 °C (Küssner)'

$Pd_{0.77}Ag_{0.23}$

 Pd_{0.77}Ag_{0.23} is the most commonly used membrane for H₂ purification because of its large H permeability over the range of interest for H₂ purification, ≈523 to ≈800 K.

For this alloy, $c_{H,up}$ is larger at comparable $p_{H2,up}$ than for Pd in the Trange of interest for H₂ purification while D_H is nearly the same and therefore J is larger than for Pd and for most other Pd-alloys.

 The H concentration in Pd_{0.77}Ag_{0.23} can be varied continuously, i.e., a second, hydride phase does not appear as it does for Pd-H below 290°C and this is an advantage because the phase change causes plastic distortion and membrane cracking.

Simplified Diagram of Membrane Experiments (in our experiments the thicknesses, d, are, $d\approx 60$ to 300 μ m)

$J=-D_H(dc_H/dx)$ is Fick's 1st law for one-dim. diffusion where D_H may depend on H content.

The general (one-dimensional) diffusion eqn. is:

 $J = -D_{H}^{*}(c_{H}/RT)(d\mu_{H}/dx)$, where D_{H}^{*} is independent of c_{H}

For M-H systems, $\mu_H(g)=\frac{1}{2}\mu_{H2}^{\circ}+RTIn p^{\frac{1}{2}}$ and at equil., $\mu_H(g)=\mu_H(metal)=\mu_H$

 $\begin{array}{l} (d\mu_{H}/dx) = (d\mu_{H}/dc_{H})(dc_{H}/dx), \ \text{then} \\ (d\mu_{H}/dx) = RT(dln \ p^{\frac{1}{2}}/dc_{H}) \ (dc_{H}/dx), \ \text{subst. into above diff. eqn.}, \\ gives \ J = -D^{*}_{H}(c_{H}/RT) \ RT(dln \ p^{\frac{1}{2}}/dc_{H}) \ (dc_{H}/dx) \ \text{ or} \\ \qquad J = -D^{*}_{H}(dlnp^{\frac{1}{2}}/dlnc_{H}) \ (dc_{H}/dx) \end{array}$

If this is compared to Fick's 1st law, J \approx -D_H (dc_H/dx), it follows that $D_{H} = D_{H}^{*}(d \ln p^{1/2}/d \ln c_{H})_{T}$

 $(dlnp^{1/2}/dlnc_H)_T$ is referred to as the thermodynamic factor and is 1.0 for an ideal solution, e.g., when H/M \rightarrow 0. It permits D_H^* to be determined from D_H at a given c_H . Non-ideality from the thermodynamic factor will be illustrated using disordered, fcc Pd-Ag and Pd-Ag-Y alloys

Instead of c_H , *r*=H-to-metal, atom ratio, is usually used for M-H isotherms. The thermodynamic factor $(dlnp^{1/2}/dln c_H)_T$ will be the same, $(dlnp^{1/2}/dln c_H)=$ $(dlnp^{1/2}/dln r)=f(r)$

We have measured isotherms to obtain f(r) to determine D_{H}^{*} from D_{H} .

The slopes of these $\ln p^{1/2}$ versus $\ln r$ isotherms for the $Pd_{0.77}Ag_{0.23}$ alloy give f(r) at each r; the dashed line is for ideal behavior.

f(*r*) against *r* for the Pd_{0.77}Ag_{0.23} Alloy (423 K) (from the slopes of the lnp^{1/2}-*r* isotherms)

Using f(*r*) values from an isotherm (303K) measured in our laboratory and D_{H}^{*} from Küssner's results we have calculated D_{H} values. (His data can be considered to be at nearly constant values of *r*).

Kussner Data Pd_{0.77}Aq_{0.23}

$\frac{\text{For Practical Conditions of H}_2 \text{ Separation}}{c_{\text{H,up}} >> c_{\text{H,down}} \approx 0}$

For these boundary conditions, Fick's 1st law, $J = -D_{H}(dc_{H}/dx), \text{ becomes } J = -D_{H}c_{H,up}/d \text{ when } c_{H,down} = 0$ and d is the membrane thickness. In our work the D_H are determined from this equation because of the boundary conditions $c_{H,up} >> c_{H,down} \approx 0$. Practical Conditions for H₂ Separation (cont.) When $c_{H,up} >> c_{H,down} \approx 0$, f(r) will vary with distance traveled through the membrane because c_{μ} varies with the distance through the membrane. An equation which allows for this variation of f(r) is: $D_{H}=D_{H}^{*}(\int f(r)dr)/r_{un}=D_{H}^{*}F(r)/r_{un}$ where $(\int f(r)dr)/r_{up}$ is the mean value of f(r) over the membrane and $D_{\rm H}$ is that measured using $J=-D_{H}c_{H,up}/d$ where $c_{H,down}\approx 0$.

The integration is from 0 to r_{up} . In the ideal case, f(r)=1.0and $D_{H}=D_{H}^{*}$

F(*r*) vs *r* from integration of f(*r*) vs *r*, shown above for Pd_{0.77}Ag_{0.23} at 423K, i.e., $F(r)=\int f(r)dr$, where $D_{\rm H}=D_{\rm H}*F(r)/r_{\rm up}$

(---, ideal, Δ , RIS approximation)

<u>The Regular Interstitial Solution (RIS) is a useful</u> <u>Approx. for M-H Systems at low *r*</u>

 $\mu_{\rm H} = \mu_{\rm H}^{\circ} + \text{RTln}[r/(1-r)] + \mu_{\rm H}^{E}(r)$ where E indicates an excess or non-ideal term. The RIS approx. assumes that $\mu_{\rm H}^{E}(r) = g_1 \ r, i.e., g_1$ is the 1st order

coefficient of an expansion of $\mu_{\rm H}^{\rm E}$ in *r* and therefore.

 $\mu_{\rm H} \approx \mu_{\rm H} + RT \ln[r/(1-r)] + g_1 r \text{ and } g_1 = h_1 - Ts_1.$

Since $\mu_{\rm H}(g) = \frac{1}{2}\mu_{\rm H2} + RT \ln p^{1/2} = \mu_{\rm H}(\text{metal}),$ RTlnp^{1/2}= $\Delta \mu_{\rm H} + RT \ln [r/(1-r)] + (g_1 r).$

For the present boundary conditions the RIS model gives $f(r)=(dlnp^{1/2}/dlnr)\approx (1-r)^{-1}+g_1r/2RT$ and $(\int f(r)dr)/r_{up}=F(r)/r_{up}\approx [1+g_1r_{up}/2RT]$, $D_H=D_H*F(r)/r_{up}\approx D_H*[1+g_1r_{up}/2RT]$ or for small rusing $ln(1+x)\approx x$ $ln D_H\approx ln D_H*+g_1r_{up}/2RT$ At small *r*, expressions for $E_{\underline{D}}$ and $D_{\underline{H}}^{\circ}$ as a function of *r* can also be obtained from the RIS model and $D_{\underline{H}}=D_{\underline{H}}^{\circ}\exp(-E_{\underline{D}}/RT)$

If $\ln D_{H} \approx \ln D_{H}^{*} + g_{1} r_{up} / 2RT$ is differentiated with respect to 1/T at constant r_{up} , d InD_µ/d(1/T)≈d In D_µ*/d(1/T)+ $[d(g_1/T)/d(1/T)](r_{up}/2R)$ or $-E_{D}/R = -E_{D}^{*}/R + [d(g_{1}/T)/d(1/T)](r_{up}/2R).$ Since $g_1 = h_1 - Ts_1$, $d(g_1/T)/d(1/T) = h_1$, $E_{\rm D} \approx E_{\rm D}^* - h_1 r_{\rm up}/2.$ It follows from the above that $\ln D_{H}^{\circ} \approx \ln D_{H}^{\circ} * - s_1 r_{un}/2R$

Summary of Relations between Diffusion and Thermodynamic Parameters from the RIS Approx for small *r*

 $In D_{H}=In D_{H}^{*}+g_{1}r_{up}/2RT$ $E_{D}=E_{D}^{*}-h_{1}r_{up}/2$ $In D_{H}^{\circ}=In D_{H}^{\circ*}-s_{1}r_{up}/2R$ $(g_{1}=h_{1}-Ts_{1})$

(for conditions of constant r, $r_{up}/2 = r$ in these eqns.)

These excess parameters can also be determined from thermodynamics. For instance, slopes of plots of $\ln p^{1/2}(1-r)/r$ against *r* at constant T give g₁ at small *r*.

(It's unusual to be able to derive the same quantities from both experimental kinetic and thermodynamic data)

Plots of RTIn D_H(473 K) and E_D versus *r* for the Pd_{0.90}Ag_{0.10} Alloy (Wang, Flanagan, Shanahan, J. Phys. Chem.,**112** (2008) 1135)

Effect of H content on E_D for Pd_{0.77}Ag_{0.23} and Pd_{0.5}Ag_{0.5} Alloy Membranes (Wang, Flanagan, Shanahan, J. Phys. Chem.,**112** (2008) 1135)

Increases shown for $D_{H^{\circ}}$ and E_{D} with *r* for the $Pd_{0.77}Ag_{0.23}$ Alloy $(\underline{D}_{H}=\underline{D}_{H^{\circ}}exp(-\underline{E}_{D}/RT))$

H₂ Isotherms for (Pd_{0.77}Ag_{0.23})_{0.94}Y_{0.06}. (Pd-Y alloys have a larger H₂ solubilities than Pd or Pd-Ag alloys over the T range of interest and have been suggested and employed as purification membranes by I. R. Harris et al.)

r

The slopes give f(r) for the $(Pd_{0.77}Ag_{0.23})_{0.94}Y_{0.06}$ Alloy at 423K

4 3.5 9990 ∕f(r)=1.0 3 25 2 ^몇 네 ^{1.5} O Inp1/2 PdAgY 150C Poly. (Inp1/2 PdAgY 150C) 1 0.5 0 -0.5 -1 -3.5 -0.5 -5 -4.5 -3 -25 -2 -1.5 -1 0 4 In r

 $(PdAg_{0.23})_{0.94}Y_{0.06}$

Plots of f(r) against r for $(Pd_{0.77}Ag_{0.23})_{0.94}Y_{0.06}$

(○,423K;●,453K;∆,473K;▲,503K;□,523K)

In D_H as function of H content for the $(Pd_{0.77}Ag_{0.23})_{0.97}Y_{0.03}$ and $(Pd_{0.77}Ag_{0.23})_{0.97}Y_{0.06}$ Alloys (473 K). D_H increases with *r* for the latter!

(Pd_{0.77}Ag_{0.23})(1-x)Y_x(473K)

E_D as a function of H content for $(Pd_{0.77}Ag_{0.23})_{0.97}Y_{0.03}$ and $(Pd_{0.77}Ag_{0.23})_{0.94}Y_{0.06}$ alloys. E_D decreases with *r* for the latter alloy.

Conclusions

When p_{up} is relatively high, i.e., conditions needed to maximize H₂ separation, f(*r*) may differ from 1.0 even at elevated T and this has often been ignored. For example, Harris et al have determined D_H. with $(p_{up}-p_{down})=3.5$ bar at 473 K for Pd_{0.75}Ag_{0.25}, Pd_{0.92}Y_{0.08} and other alloys. These conditions will lead to f(*r*)≠1.0 and will have different values for the alloys and therefore it is not clear what D_H values are being compared under these conditions.

One goal will be to use non-ideality to increase the membrane permeability by increasing D_H at T and p_{H2} of interest for H_2 separation. Alloys with isotherms similar to that of the $(Pd_{0.77}Ag_{0.23})_{0.94}Y_{0.06}$ alloy at the desired temperatures are needed, i.e., those with large positive deviations from ideality yet having large solubilities.

Plot of RTIn $D_H vs r_{up}$ (423 K) Pd_{0.77}Ag_{0.23} Alloy

Effect of r_{up} on $D_{H^{\circ}}^{\circ}$

For Pd and *Pd*-M alloys (with X_M not too large), h_1 is more negative than g_1 . Since $g_1=h_1-Ts_1$, $s_1=(h_1-g_1)/T$, and therefore s_1 must be negative. (This is found experimentally for Pd-H, e.g., at 473 K, $h_1=-83$ kJ/mol H, $g_1=-43$ kJ/mol H (Kuji et al, J. Phys. F: Met. Phys. 13 (1983) 1785)

From In $D_{H}^{\circ}=\ln D_{H}^{\circ*}-s_{1}r_{up}/2R$, it follows that D_{H}° must increase with r_{up} for these systems at low H contents, i.e., there is a compensation effect operating, when r_{up} increases, E_{D} increases (decreases D_{H}) and In D_{H}° increases (increases D_{H}).

 $(D_H = D_H^{\circ} exp(-E_D/RT))$